[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v19y2019i1p105-121.html
   My bibliography  Save this article

Data-driven robust mean-CVaR portfolio selection under distribution ambiguity

Author

Listed:
  • Zhilin Kang
  • Xun Li
  • Zhongfei Li
  • Shushang Zhu
Abstract
In this paper, we present a computationally tractable optimization method for a robust mean-CVaR portfolio selection model under the condition of distribution ambiguity. We develop an extension that allows the model to capture a zero net adjustment via a linear constraint in the mean return, which can be cast as a tractable conic programme. Also, we adopt a nonparametric bootstrap approach to calibrate the levels of ambiguity and show that the portfolio strategies are relatively immune to variations in input values. Finally, we show that the resulting robust portfolio is very well diversified and superior to its non-robust counterpart in terms of portfolio stability, expected returns and turnover. The results of numerical experiments with simulated and real market data shed light on the established behaviour of our distributionally robust optimization model.

Suggested Citation

  • Zhilin Kang & Xun Li & Zhongfei Li & Shushang Zhu, 2019. "Data-driven robust mean-CVaR portfolio selection under distribution ambiguity," Quantitative Finance, Taylor & Francis Journals, vol. 19(1), pages 105-121, January.
  • Handle: RePEc:taf:quantf:v:19:y:2019:i:1:p:105-121
    DOI: 10.1080/14697688.2018.1466057
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2018.1466057
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2018.1466057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Panos Xidonas & Ralph Steuer & Christis Hassapis, 2020. "Robust portfolio optimization: a categorized bibliographic review," Annals of Operations Research, Springer, vol. 292(1), pages 533-552, September.
    2. Ghahtarani, Alireza & Saif, Ahmed & Ghasemi, Alireza, 2024. "Worst-case Conditional Value at Risk for asset liability management: A framework for general loss functions," European Journal of Operational Research, Elsevier, vol. 318(2), pages 500-519.
    3. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2022. "Robust portfolio selection problems: a comprehensive review," Operational Research, Springer, vol. 22(4), pages 3203-3264, September.
    4. Wu, Xu & Zhang, Linlin & Li, Jia & Yan, Ruzhen, 2021. "Fractal statistical measure and portfolio model optimization under power-law distribution," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    5. Xin Hai & Kihun Nam, 2023. "Robust Wasserstein Optimization and its Application in Mean-CVaR," Papers 2306.15524, arXiv.org.
    6. Yang, Tingting & Huang, Xiaoxia, 2022. "Two new mean–variance enhanced index tracking models based on uncertainty theory," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    7. Jun Cai & Zhanyi Jiao & Tiantian Mao, 2024. "Worst-case values of target semi-variances with applications to robust portfolio selection," Papers 2410.01732, arXiv.org, revised Oct 2024.
    8. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2021. "Robust Portfolio Selection Problems: A Comprehensive Review," Papers 2103.13806, arXiv.org, revised Jan 2022.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:19:y:2019:i:1:p:105-121. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.