[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/taf/applec/v48y2016i46p4462-4475.html
   My bibliography  Save this article

Forecasting US consumer price index: does nonlinearity matter?

Author

Listed:
  • Marcos Álvarez-Díaz
  • Rangan Gupta
Abstract
The objective of this article is to predict, both in sample and out of sample, the consumer price index (CPI) of the US economy based on monthly data covering the period of 1980:1–2013:12, using a variety of linear (random walk (RW), autoregressive (AR) and seasonal autoregressive integrated moving average (SARIMA)) and nonlinear (artificial neural network (ANN) and genetic programming (GP)) univariate models. Our results show that, while the SARIMA model is superior relative to other linear and nonlinear models, as it tends to produce smaller forecast errors; statistically, these forecasting gains are not significant relative to higher-order AR and nonlinear models, though simple benchmarks like the RW and AR(1) models are statistically outperformed. Overall, we show that in terms of forecasting the US CPI, accounting for nonlinearity does not necessarily provide us with any statistical gains.

Suggested Citation

  • Marcos Álvarez-Díaz & Rangan Gupta, 2016. "Forecasting US consumer price index: does nonlinearity matter?," Applied Economics, Taylor & Francis Journals, vol. 48(46), pages 4462-4475, October.
  • Handle: RePEc:taf:applec:v:48:y:2016:i:46:p:4462-4475
    DOI: 10.1080/00036846.2016.1158922
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00036846.2016.1158922
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00036846.2016.1158922?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hany Guirguis & Vaneesha Boney Dutra & Zoe McGreevy, 2022. "The impact of global economies on US inflation: A test of the Phillips curve," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 46(3), pages 575-592, July.
    2. Tea Šestanović & Josip Arnerić, 2021. "Can Recurrent Neural Networks Predict Inflation in Euro Zone as Good as Professional Forecasters?," Mathematics, MDPI, vol. 9(19), pages 1-13, October.
    3. Marcos à lvarez-Díaz & Manuel González-Gómez & María Soledad Otero-Giráldez, 2019. "Estimating the economic impact of a political conflict on tourism: The case of the Catalan separatist challenge," Tourism Economics, , vol. 25(1), pages 34-50, February.
    4. Xiao, Jiang & Wang, Minggang & Tian, Lixin & Zhen, Zaili, 2018. "The measurement of China’s consumer market development based on CPI data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 664-680.
    5. Marcos Álvarez-Díaz & Manuel González-Gómez & María Soledad Otero-Giráldez, 2018. "Forecasting International Tourism Demand Using a Non-Linear Autoregressive Neural Network and Genetic Programming," Forecasting, MDPI, vol. 1(1), pages 1-17, September.
    6. Christou, Christina & Gupta, Rangan & Nyakabawo, Wendy & Wohar, Mark E., 2018. "Do house prices hedge inflation in the US? A quantile cointegration approach," International Review of Economics & Finance, Elsevier, vol. 54(C), pages 15-26.
    7. Panpan Zhu & Qingjie Zhou & Yinpeng Zhang, 2024. "Investor attention and consumer price index inflation rate: Evidence from the United States," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-12, December.
    8. Marcos Álvarez-Díaz, 2020. "Is it possible to accurately forecast the evolution of Brent crude oil prices? An answer based on parametric and nonparametric forecasting methods," Empirical Economics, Springer, vol. 59(3), pages 1285-1305, September.
    9. Qingru Sun & Xiangyun Gao & Ze Wang & Siyao Liu & Sui Guo & Yang Li, 2020. "Quantifying the risk of price fluctuations based on weighted Granger causality networks of consumer price indices: evidence from G7 countries," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 15(4), pages 821-844, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:applec:v:48:y:2016:i:46:p:4462-4475. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAEC20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.