[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v42y2023i4p756-784.html
   My bibliography  Save this article

A dynamic performance evaluation of distress prediction models

Author

Listed:
  • Mohammad Mahdi Mousavi
  • Jamal Ouenniche
  • Kaoru Tone
Abstract
So far, the dominant comparative studies of competing distress prediction models (DPMs) have been restricted to the use of static evaluation frameworks and as such overlooked their performance over time. This study fills this gap by proposing a Malmquist Data Envelopment Analysis (DEA)‐based multi‐period performance evaluation framework for assessing competing static and dynamic statistical DPMs and using it to address a variety of research questions. Our findings suggest that (1) dynamic models developed under duration‐dependent frameworks outperform both dynamic models developed under duration‐independent frameworks and static models; (2) models fed with financial accounting (FA), market variables (MV), and macroeconomic information (MI) features outperform those fed with either MVMI or FA, regardless of the frameworks under which they are developed; (3) shorter training horizons seem to enhance the aggregate performance of both static and dynamic models.

Suggested Citation

  • Mohammad Mahdi Mousavi & Jamal Ouenniche & Kaoru Tone, 2023. "A dynamic performance evaluation of distress prediction models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 756-784, July.
  • Handle: RePEc:wly:jforec:v:42:y:2023:i:4:p:756-784
    DOI: 10.1002/for.2915
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.2915
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.2915?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. C. Neves & A. Vieira, 2006. "Improving bankruptcy prediction with Hidden Layer Learning Vector Quantization," European Accounting Review, Taylor & Francis Journals, vol. 15(2), pages 253-271.
    2. Mohammadi, Ali & Rafiee, Shahin & Mohtasebi, Seyed Saeid & Mousavi Avval, Seyed Hashem & Rafiee, Hamed, 2011. "Energy efficiency improvement and input cost saving in kiwifruit production using Data Envelopment Analysis approach," Renewable Energy, Elsevier, vol. 36(9), pages 2573-2579.
    3. Unler, Alper & Murat, Alper, 2010. "A discrete particle swarm optimization method for feature selection in binary classification problems," European Journal of Operational Research, Elsevier, vol. 206(3), pages 528-539, November.
    4. Wu, Y. & Gaunt, C. & Gray, S., 2010. "A comparison of alternative bankruptcy prediction models," Journal of Contemporary Accounting and Economics, Elsevier, vol. 6(1), pages 34-45.
    5. Lyandres, Evgeny & Zhdanov, Alexei, 2013. "Investment opportunities and bankruptcy prediction," Journal of Financial Markets, Elsevier, vol. 16(3), pages 439-476.
    6. Deakin, Eb, 1972. "Discriminant Analysis Of Predictors Of Business Failure," Journal of Accounting Research, Wiley Blackwell, vol. 10(1), pages 167-179.
    7. Jamal Ouenniche & Kaoru Tone, 2017. "An out-of-sample evaluation framework for DEA with application in bankruptcy prediction," Annals of Operations Research, Springer, vol. 254(1), pages 235-250, July.
    8. Bauer, Julian & Agarwal, Vineet, 2014. "Are hazard models superior to traditional bankruptcy prediction approaches? A comprehensive test," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 432-442.
    9. Rahmi Aktug, 2014. "A Critique of the Contingent Claims Approach to Sovereign Risk Analysis," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 50(S1), pages 294-308.
    10. Balcaen, Sofie & Ooghe, Hubert, 2006. "35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems," The British Accounting Review, Elsevier, vol. 38(1), pages 63-93.
    11. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    12. Fare, Rolf & Shawna Grosskopf & Mary Norris & Zhongyang Zhang, 1994. "Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries," American Economic Review, American Economic Association, vol. 84(1), pages 66-83, March.
    13. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure - Reply," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 123-127.
    14. Zhao, Lima & Huchzermeier, Arnd, 2019. "Managing supplier financial distress with advance payment discount and purchase order financing," Omega, Elsevier, vol. 88(C), pages 77-90.
    15. Alnoor Bhimani & Mohamed Azzim Gulamhussen & Samuel da Rocha Lopes, 2013. "The Role of Financial, Macroeconomic, and Non-financial Information in Bank Loan Default Timing Prediction," European Accounting Review, Taylor & Francis Journals, vol. 22(4), pages 739-763, December.
    16. Tian, Shaonan & Yu, Yan, 2017. "Financial ratios and bankruptcy predictions: An international evidence," International Review of Economics & Finance, Elsevier, vol. 51(C), pages 510-526.
    17. Ravi Kumar, P. & Ravi, V., 2007. "Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review," European Journal of Operational Research, Elsevier, vol. 180(1), pages 1-28, July.
    18. du Jardin, Philippe & Séverin, Eric, 2012. "Forecasting financial failure using a Kohonen map: A comparative study to improve model stability over time," European Journal of Operational Research, Elsevier, vol. 221(2), pages 378-396.
    19. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    20. Mousavi, Mohammad M. & Ouenniche, Jamal & Xu, Bing, 2015. "Performance evaluation of bankruptcy prediction models: An orientation-free super-efficiency DEA-based framework," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 64-75.
    21. Agarwal, Vineet & Taffler, Richard, 2008. "Comparing the performance of market-based and accounting-based bankruptcy prediction models," Journal of Banking & Finance, Elsevier, vol. 32(8), pages 1541-1551, August.
    22. Caves, Douglas W & Christensen, Laurits R & Diewert, W Erwin, 1982. "The Economic Theory of Index Numbers and the Measurement of Input, Output, and Productivity," Econometrica, Econometric Society, vol. 50(6), pages 1393-1414, November.
    23. Geng, Ruibin & Bose, Indranil & Chen, Xi, 2015. "Prediction of financial distress: An empirical study of listed Chinese companies using data mining," European Journal of Operational Research, Elsevier, vol. 241(1), pages 236-247.
    24. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 71-111.
    25. Sudheer Chava & Robert A. Jarrow, 2008. "Bankruptcy Prediction with Industry Effects," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 21, pages 517-549, World Scientific Publishing Co. Pte. Ltd..
    26. Chae Woo Nam & Tong Suk Kim & Nam Jung Park & Hoe Kyung Lee, 2008. "Bankruptcy prediction using a discrete-time duration model incorporating temporal and macroeconomic dependencies," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(6), pages 493-506.
    27. Kelly Rae Chi, 2010. "A systems approach," Nature, Nature, vol. 464(7291), pages 1090-1091, April.
    28. Rahmi Erdem Aktug, 2014. "A Critique of the Contingent Claims Approach to Sovereign Risk Analysis," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 50(1S), pages 294-308, January.
    29. Pindado, Julio & Rodrigues, Luis & de la Torre, Chabela, 2008. "Estimating financial distress likelihood," Journal of Business Research, Elsevier, vol. 61(9), pages 995-1003, September.
    30. Arindam Bandyopadhyay, 2006. "Predicting probability of default of Indian corporate bonds: logistic and Z-score model approaches," Journal of Risk Finance, Emerald Group Publishing, vol. 7(3), pages 255-272, May.
    31. McKee, Thomas E. & Lensberg, Terje, 2002. "Genetic programming and rough sets: A hybrid approach to bankruptcy classification," European Journal of Operational Research, Elsevier, vol. 138(2), pages 436-451, April.
    32. Ruey-Ching Hwang & Huimin Chung & Jiun-Yi Ku, 2013. "Predicting Recurrent Financial Distresses with Autocorrelation Structure: An Empirical Analysis from an Emerging Market," Journal of Financial Services Research, Springer;Western Finance Association, vol. 43(3), pages 321-341, June.
    33. Pastor, Jesus T. & Lovell, C.A. Knox, 2005. "A global Malmquist productivity index," Economics Letters, Elsevier, vol. 88(2), pages 266-271, August.
    34. Arindam Bandyopadhyay, 2006. "Predicting probability of default of Indian corporate bonds: logistic andZ‐score model approaches," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 7(3), pages 255-272, May.
    35. Linda Allen & Anthony Saunders, 2004. "Incorporating Systemic Influences Into Risk Measurements: A Survey of the Literature," Journal of Financial Services Research, Springer;Western Finance Association, vol. 26(2), pages 161-191, October.
    36. Doumpos, M. & Kosmidou, K. & Baourakis, G. & Zopounidis, C., 2002. "Credit risk assessment using a multicriteria hierarchical discrimination approach: A comparative analysis," European Journal of Operational Research, Elsevier, vol. 138(2), pages 392-412, April.
    37. Li, Leon & Faff, Robert, 2019. "Predicting corporate bankruptcy: What matters?," International Review of Economics & Finance, Elsevier, vol. 62(C), pages 1-19.
    38. Mohammad Mahdi Mousavi & Jamal Ouenniche, 2018. "Multi-criteria ranking of corporate distress prediction models: empirical evaluation and methodological contributions," Annals of Operations Research, Springer, vol. 271(2), pages 853-886, December.
    39. Blum, M, 1974. "Failing Company Discriminant-Analysis," Journal of Accounting Research, Wiley Blackwell, vol. 12(1), pages 1-25.
    40. Wanke, Peter & Barros, Carlos P. & Faria, João R., 2015. "Financial distress drivers in Brazilian banks: A dynamic slacks approach," European Journal of Operational Research, Elsevier, vol. 240(1), pages 258-268.
    41. Pacheco, Joaquín & Casado, Silvia & Núñez, Laura, 2009. "A variable selection method based on Tabu search for logistic regression models," European Journal of Operational Research, Elsevier, vol. 199(2), pages 506-511, December.
    42. Hernandez Tinoco, Mario & Wilson, Nick, 2013. "Financial distress and bankruptcy prediction among listed companies using accounting, market and macroeconomic variables," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 394-419.
    43. Andreas Charitou & Evi Neophytou & Chris Charalambous, 2004. "Predicting corporate failure: empirical evidence for the UK," European Accounting Review, Taylor & Francis Journals, vol. 13(3), pages 465-497.
    44. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    45. Martin, Daniel, 1977. "Early warning of bank failure : A logit regression approach," Journal of Banking & Finance, Elsevier, vol. 1(3), pages 249-276, November.
    46. Demyanyk, Yuliya & Hasan, Iftekhar, 2010. "Financial crises and bank failures: A review of prediction methods," Omega, Elsevier, vol. 38(5), pages 315-324, October.
    47. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    48. Zmijewski, Me, 1984. "Methodological Issues Related To The Estimation Of Financial Distress Prediction Models," Journal of Accounting Research, Wiley Blackwell, vol. 22, pages 59-82.
    49. B. Xu & J. Ouenniche, 2011. "A multidimensional framework for performance evaluation of forecasting models: context-dependent DEA," Applied Financial Economics, Taylor & Francis Journals, vol. 21(24), pages 1873-1890, December.
    50. Tsun‐Siou Lee & Yin‐Hua Yeh, 2004. "Corporate Governance and Financial Distress: evidence from Taiwan," Corporate Governance: An International Review, Wiley Blackwell, vol. 12(3), pages 378-388, July.
    51. Kaoru Tone, 2011. "Slacks-Based Measure of Efficiency," International Series in Operations Research & Management Science, in: William W. Cooper & Lawrence M. Seiford & Joe Zhu (ed.), Handbook on Data Envelopment Analysis, chapter 0, pages 195-209, Springer.
    52. Laitinen, Erkki K. & Suvas, Arto, 2016. "Financial distress prediction in an international context: Moderating effects of Hofstede’s original cultural dimensions," Journal of Behavioral and Experimental Finance, Elsevier, vol. 9(C), pages 98-118.
    53. Alizadeh, Reza & Gharizadeh Beiragh, Ramin & Soltanisehat, Leili & Soltanzadeh, Elham & Lund, Peter D., 2020. "Performance evaluation of complex electricity generation systems: A dynamic network-based data envelopment analysis approach," Energy Economics, Elsevier, vol. 91(C).
    54. Caves, Douglas W & Christensen, Laurits R & Diewert, W Erwin, 1982. "Multilateral Comparisons of Output, Input, and Productivity Using Superlative Index Numbers," Economic Journal, Royal Economic Society, vol. 92(365), pages 73-86, March.
    55. Grice, John Stephen & Ingram, Robert W., 2001. "Tests of the generalizability of Altman's bankruptcy prediction model," Journal of Business Research, Elsevier, vol. 54(1), pages 53-61, October.
    56. Luoma, M & Laitinen, EK, 1991. "Survival analysis as a tool for company failure prediction," Omega, Elsevier, vol. 19(6), pages 673-678.
    57. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    58. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    59. Cleary, Sean & Hebb, Greg, 2016. "An efficient and functional model for predicting bank distress: In and out of sample evidence," Journal of Banking & Finance, Elsevier, vol. 64(C), pages 101-111.
    60. Peter Back, 2005. "Explaining financial difficulties based on previous payment behavior, management background variables and financial ratios," European Accounting Review, Taylor & Francis Journals, vol. 14(4), pages 839-868.
    61. Mensah, Ym, 1984. "An Examination Of The Stationarity Of Multivariate Bankruptcy Prediction Models - A Methodological Study," Journal of Accounting Research, Wiley Blackwell, vol. 22(1), pages 380-395.
    62. Meyer, Paul A & Pifer, Howard W, 1970. "Prediction of Bank Failures," Journal of Finance, American Finance Association, vol. 25(4), pages 853-868, September.
    63. Eliezer Fich & Steve Slezak, 2008. "Can corporate governance save distressed firms from bankruptcy? An empirical analysis," Review of Quantitative Finance and Accounting, Springer, vol. 30(2), pages 225-251, February.
    64. Shumway, Tyler, 2001. "Forecasting Bankruptcy More Accurately: A Simple Hazard Model," The Journal of Business, University of Chicago Press, vol. 74(1), pages 101-124, January.
    65. P. Du Jardin & E. Séverin, 2012. "Forecasting financial failure using a Kohonen map: a comparative study to improve bankruptcy model over time," Post-Print hal-00801853, HAL.
    66. Sreedhar T. Bharath & Tyler Shumway, 2008. "Forecasting Default with the Merton Distance to Default Model," The Review of Financial Studies, Society for Financial Studies, vol. 21(3), pages 1339-1369, May.
    67. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    68. Collins, Robert A. & Green, Richard D., 1982. "Statistical methods for bankruptcy forecasting," Journal of Economics and Business, Elsevier, vol. 34(4), pages 349-354.
    69. Doumpos, Michalis & Figueira, José Rui, 2019. "A multicriteria outranking approach for modeling corporate credit ratings: An application of the Electre Tri-nC method," Omega, Elsevier, vol. 82(C), pages 166-180.
    70. Frydman, Halina & Altman, Edward I & Kao, Duen-Li, 1985. "Introducing Recursive Partitioning for Financial Classification: The Case of Financial Distress," Journal of Finance, American Finance Association, vol. 40(1), pages 269-291, March.
    71. Jairaj Gupta & Andros Gregoriou & Jerome Healy, 2015. "Forecasting bankruptcy for SMEs using hazard function: To what extent does size matter?," Review of Quantitative Finance and Accounting, Springer, vol. 45(4), pages 845-869, November.
    72. Lo, Andrew W., 1986. "Logit versus discriminant analysis : A specification test and application to corporate bankruptcies," Journal of Econometrics, Elsevier, vol. 31(2), pages 151-178, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jarmila Horváthová & Martina Mokrišová & Martin Bača, 2023. "Bankruptcy Prediction for Sustainability of Businesses: The Application of Graph Theoretical Modeling," Mathematics, MDPI, vol. 11(24), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Mahdi Mousavi & Jamal Ouenniche, 2018. "Multi-criteria ranking of corporate distress prediction models: empirical evaluation and methodological contributions," Annals of Operations Research, Springer, vol. 271(2), pages 853-886, December.
    2. Şaban Çelik, 2013. "Micro Credit Risk Metrics: A Comprehensive Review," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 20(4), pages 233-272, October.
    3. Nawaf Almaskati & Ron Bird & Yue Lu & Danny Leung, 2019. "The Role of Corporate Governance and Estimation Methods in Predicting Bankruptcy," Working Papers in Economics 19/16, University of Waikato.
    4. Sumaira Ashraf & Elisabete G. S. Félix & Zélia Serrasqueiro, 2019. "Do Traditional Financial Distress Prediction Models Predict the Early Warning Signs of Financial Distress?," JRFM, MDPI, vol. 12(2), pages 1-17, April.
    5. Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
    6. Ahsan Habib & Mabel D' Costa & Hedy Jiaying Huang & Md. Borhan Uddin Bhuiyan & Li Sun, 2020. "Determinants and consequences of financial distress: review of the empirical literature," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(S1), pages 1023-1075, April.
    7. Duc Hong Vo & Binh Ninh Vo Pham & Chi Minh Ho & Michael McAleer, 2019. "Corporate Financial Distress of Industry Level Listings in Vietnam," JRFM, MDPI, vol. 12(4), pages 1-17, September.
    8. Zhiyong Li & Chen Feng & Ying Tang, 2022. "Bank efficiency and failure prediction: a nonparametric and dynamic model based on data envelopment analysis," Annals of Operations Research, Springer, vol. 315(1), pages 279-315, August.
    9. Bhanu Pratap Singh & Alok Kumar Mishra, 2016. "Re-estimation and comparisons of alternative accounting based bankruptcy prediction models for Indian companies," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 2(1), pages 1-28, December.
    10. Serrano-Cinca, Carlos & Gutiérrez-Nieto, Begoña & Bernate-Valbuena, Martha, 2019. "The use of accounting anomalies indicators to predict business failure," European Management Journal, Elsevier, vol. 37(3), pages 353-375.
    11. Mousavi, Mohammad M. & Ouenniche, Jamal & Xu, Bing, 2015. "Performance evaluation of bankruptcy prediction models: An orientation-free super-efficiency DEA-based framework," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 64-75.
    12. fernández, María t. Tascón & gutiérrez, Francisco J. Castaño, 2012. "Variables y Modelos Para La Identificación y Predicción Del Fracaso Empresarial: Revisión de La Investigación Empírica Reciente," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 15(1), pages 7-58.
    13. Alessandro Bitetto & Stefano Filomeni & Michele Modina, 2021. "Understanding corporate default using Random Forest: The role of accounting and market information," DEM Working Papers Series 205, University of Pavia, Department of Economics and Management.
    14. Hernandez Tinoco, Mario & Wilson, Nick, 2013. "Financial distress and bankruptcy prediction among listed companies using accounting, market and macroeconomic variables," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 394-419.
    15. Jackson, Richard H.G. & Wood, Anthony, 2013. "The performance of insolvency prediction and credit risk models in the UK: A comparative study," The British Accounting Review, Elsevier, vol. 45(3), pages 183-202.
    16. du Jardin, Philippe, 2015. "Bankruptcy prediction using terminal failure processes," European Journal of Operational Research, Elsevier, vol. 242(1), pages 286-303.
    17. John Nkwoma Inekwe, 2016. "Financial Distress, Employees’ Welfare and Entrepreneurship Among SMEs," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 129(3), pages 1135-1153, December.
    18. Tomasz Korol, 2019. "Dynamic Bankruptcy Prediction Models for European Enterprises," JRFM, MDPI, vol. 12(4), pages 1-15, December.
    19. Vo, D.H. & Pham, B.V.-N. & Pham, T.V.-T. & McAleer, M.J., 2019. "Corporate Financial Distress of Industry Level Listings in an Emerging Market," Econometric Institute Research Papers EI2019-15, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    20. Katarina Valaskova & Dominika Gajdosikova & Jaroslav Belas, 2023. "Bankruptcy prediction in the post-pandemic period: A case study of Visegrad Group countries," Oeconomia Copernicana, Institute of Economic Research, vol. 14(1), pages 253-293, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:42:y:2023:i:4:p:756-784. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.