[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0050755.html
   My bibliography  Save this article

Significant Mean and Extreme Climate Sensitivity of Norway Spruce and Silver Fir at Mid-Elevation Mesic Sites in the Alps

Author

Listed:
  • Marco Carrer
  • Renzo Motta
  • Paola Nola
Abstract
Climate forcing is the major abiotic driver for forest ecosystem functioning and thus significantly affects the role of forests within the global carbon cycle and related ecosystem services. Annual radial increments of trees are probably the most valuable source of information to link tree growth and climate at long-term time scales, and have been used in a wide variety of investigations worldwide. However, especially in mountainous areas, tree-ring studies have focused on extreme environments where the climate sensitivity is perhaps greatest but are necessarily a biased representation of the forests within a region. We used tree-ring analyses to study two of the most important tree species growing in the Alps: Norway spruce (Picea abies) and silver fir (Abies alba). We developed tree-ring chronologies from 13 mesic mid-elevation sites (203 trees) and then compared them to monthly temperature and precipitation data for the period 1846–1995. Correlation functions, principal component analysis and fuzzy C-means clustering were applied to 1) assess the climate/growth relationships and their stationarity and consistency over time, and 2) extract common modes of variability in the species responses to mean and extreme climate variability. Our results highlight a clear, time-stable, and species-specific response to mean climate conditions. However, during the previous-year's growing season, which shows the strongest correlations, the primary difference between species is in their response to extreme events, not mean conditions. Mesic sites at mid-altitude are commonly underrepresented in tree-ring research; we showed that strong climatic controls of growth may exist even in those areas. Extreme climatic events may play a key role in defining the species-specific responses on climatic sensitivity and, with a global change perspective, specific divergent responses are likely to occur even where current conditions are less limited.

Suggested Citation

  • Marco Carrer & Renzo Motta & Paola Nola, 2012. "Significant Mean and Extreme Climate Sensitivity of Norway Spruce and Silver Fir at Mid-Elevation Mesic Sites in the Alps," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-9, November.
  • Handle: RePEc:plo:pone00:0050755
    DOI: 10.1371/journal.pone.0050755
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0050755
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0050755&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0050755?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Li, Baibing & Martin, Elaine B. & Morris, A. Julian, 2002. "On principal component analysis in L1," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 471-474, September.
    2. Peres-Neto, Pedro R. & Jackson, Donald A. & Somers, Keith M., 2005. "How many principal components? stopping rules for determining the number of non-trivial axes revisited," Computational Statistics & Data Analysis, Elsevier, vol. 49(4), pages 974-997, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lagarrigues, Guillaume & Jabot, Franck & Lafond, Valentine & Courbaud, Benoit, 2015. "Approximate Bayesian computation to recalibrate individual-based models with population data: Illustration with a forest simulation model," Ecological Modelling, Elsevier, vol. 306(C), pages 278-286.
    2. Fahim Arshad & Muhammad Waheed & Kaneez Fatima & Nidaa Harun & Muhammad Iqbal & Kaniz Fatima & Shaheena Umbreen, 2022. "Predicting the Suitable Current and Future Potential Distribution of the Native Endangered Tree Tecomella undulata (Sm.) Seem. in Pakistan," Sustainability, MDPI, vol. 14(12), pages 1-10, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joy R. Petway & Yu-Pin Lin & Rainer F. Wunderlich, 2019. "Analyzing Opinions on Sustainable Agriculture: Toward Increasing Farmer Knowledge of Organic Practices in Taiwan-Yuanli Township," Sustainability, MDPI, vol. 11(14), pages 1-27, July.
    2. Leise Kelli de Oliveira & Carla de Oliveira Leite Nascimento & Paulo Renato de Sousa & Paulo Tarso Vilela de Resende & Francisco Gildemir Ferreira da Silva, 2019. "Transport Service Provider Perception of Barriers and Urban Freight Policies in Brazil," Sustainability, MDPI, vol. 11(24), pages 1-17, December.
    3. Dray, Stephane, 2008. "On the number of principal components: A test of dimensionality based on measurements of similarity between matrices," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 2228-2237, January.
    4. Psaradakis, Zacharias & Vávra, Marián, 2014. "On testing for nonlinearity in multivariate time series," Economics Letters, Elsevier, vol. 125(1), pages 1-4.
    5. Bauer, Jan O. & Drabant, Bernhard, 2021. "Principal loading analysis," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    6. Qingyong Wang & Hong-Ning Dai & Hao Wang, 2017. "A Smart MCDM Framework to Evaluate the Impact of Air Pollution on City Sustainability: A Case Study from China," Sustainability, MDPI, vol. 9(6), pages 1-17, May.
    7. Cumming, J.A. & Wooff, D.A., 2007. "Dimension reduction via principal variables," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 550-565, September.
    8. Archimbaud, Aurore & Nordhausen, Klaus & Ruiz-Gazen, Anne, 2018. "ICS for multivariate outlier detection with application to quality control," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 184-199.
    9. Paola Zuccolotto, 2012. "Principal component analysis with interval imputed missing values," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(1), pages 1-23, January.
    10. Iyetomi, Hiroshi & Nakayama, Yasuhiro & Yoshikawa, Hiroshi & Aoyama, Hideaki & Fujiwara, Yoshi & Ikeda, Yuichi & Souma, Wataru, 2011. "What causes business cycles? Analysis of the Japanese industrial production data," Journal of the Japanese and International Economies, Elsevier, vol. 25(3), pages 246-272, September.
    11. Josse, Julie & Husson, François, 2012. "Selecting the number of components in principal component analysis using cross-validation approximations," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1869-1879.
    12. Kelly P. Murillo & Eugenio M. Rocha, 2020. "Factors Influencing the Economic Behavior of the Food, Beverages and Tobacco Industry: A Case Study for Portuguese Enterprises," World Journal of Applied Economics, WERI-World Economic Research Institute, vol. 6(2), pages 99-121, December.
    13. Sergio Camiz & Valério D. Pillar, 2018. "Identifying the Informational/Signal Dimension in Principal Component Analysis," Mathematics, MDPI, vol. 6(11), pages 1-16, November.
    14. Juan Carlos Chávez & Felipe J. Fonseca & Manuel Gómez-Zaldívar, 2017. "Resoluciones de disputas comerciales y desempeño económico regional en México. (Commercial Disputes Resolution and Regional Economic Performance in Mexico)," Ensayos Revista de Economia, Universidad Autonoma de Nuevo Leon, Facultad de Economia, vol. 0(1), pages 79-93, May.
    15. Chen, Ray-Bing & Chen, Ying & Härdle, Wolfgang K., 2014. "TVICA—Time varying independent component analysis and its application to financial data," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 95-109.
    16. Yan Yu Chen & Chun-Cheih Chao & Fu-Chen Liu & Po-Chen Hsu & Hsueh-Fen Chen & Shih-Chi Peng & Yung-Jen Chuang & Chung-Yu Lan & Wen-Ping Hsieh & David Shan Hill Wong, 2013. "Dynamic Transcript Profiling of Candida albicans Infection in Zebrafish: A Pathogen-Host Interaction Study," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-16, September.
    17. Claudio Morana, 2014. "Factor Vector Autoregressive Estimation of Heteroskedastic Persistent and Non Persistent Processes Subject to Structural Breaks," Working Papers 273, University of Milano-Bicocca, Department of Economics, revised May 2014.
    18. Plat, Richard, 2009. "Stochastic portfolio specific mortality and the quantification of mortality basis risk," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 123-132, August.
    19. Kondylis, Athanassios & Whittaker, Joe, 2008. "Spectral preconditioning of Krylov spaces: Combining PLS and PC regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2588-2603, January.
    20. Simplice A. Asongu & Nicholas M. Odhiambo, 2019. "Governance, capital flight and industrialisation in Africa," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 8(1), pages 1-22, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0050755. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.