[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/pab/rmcpee/v6y2008i1p23-41.html
   My bibliography  Save this article

Prediction of individual automobile reported but not settled claim reserves for bodily injuries in the context of Solvency II = Predicción de las reservas individuales para siniestros del automóvil con daños corporales pendientes de liquidación en el contexto de Solvencia II

Author

Listed:
  • Ayuso Gutierrez, M. Mercedes

    (Departament d’Econometria, Estadística i Economia Espanyola, Universitat de Barcelona)

  • Santolino Prieto, Miguel Á.

    (Departament d’Econometria, Estadística i Economia Espanyola, Universitat de Barcelona)

Abstract
Automobile bodily injury (BI) claims remain unsettled for a long time after the accident. The estimation of an accurate reserve for Reported but not Settled claims is therefore vital for insurers. In accordance with the recommendation included in the Solvency II project, a statistical model is implemented for reserve estimation. Lognormality on empirical cost data is observed for different levels of BI severity. The individual claim provision is estimated by allocating the expected mean compensation for the predicted severity of the victim’s injury, for which the upper bound is also computed. The severity is predicted by means of a heteroscedastic multiple choice model, because evidence has found that the variability in the latent severity of individuals travelling by car is not constant. It is shown that this methodology improves the accuracy of reserve estimation at all stages, as compared to the subjective assessment that has traditionally been made by practitioners. = Los siniestros del automóvil con daños corporales suelen permanecer sin liquidar durante largos periodos después del accidente. Una adecuada estimación por siniestros comunicados pero no liquidados es por tanto de vital importancia para los aseguradores. Siguiendo las recomendaciones incluidas en el proyecto de Solvencia II, se implementa un método estadístico para la estimación de la reserva. En concreto, se observa que el coste de compensación se distribuye lognormalmente para diferentes niveles de gravedad del daño corporal. La provisión individual del siniestro la estimamos asignando el valor esperado de compensación media según la gravedad predicha de la lesión de la víctima, para la cual también se calcula el límite superior. La gravedad la predecimos mediante un modelo heterocedástico de elección múltiple, porque hallamos evidencias de que la variabilidad en la gravedad latente no es constante para los individuos que viajaban en un turismo. Se demuestra que la metodología propuesta mejora la precisión en la estimación de las reservas en todas las etapas, en comparación con la valoración subjetiva que ha sido tradicionalmente hecha por los peritos de la compañía.

Suggested Citation

  • Ayuso Gutierrez, M. Mercedes & Santolino Prieto, Miguel Á., 2008. "Prediction of individual automobile reported but not settled claim reserves for bodily injuries in the context of Solvency II = Predicción de las reservas individuales para siniestros del automóvil co," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 6(1), pages 23-41, December.
  • Handle: RePEc:pab:rmcpee:v:6:y:2008:i:1:p:23-41
    as

    Download full text from publisher

    File URL: http://www.upo.es/RevMetCuant/art22.pdf
    Download Restriction: no

    File URL: http://www.upo.es/RevMetCuant/art22.txt
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Larsen, Christian Roholte, 2007. "An Individual Claims Reserving Model," ASTIN Bulletin, Cambridge University Press, vol. 37(1), pages 113-132, May.
    2. England, P. D. & Verrall, R. J., 2006. "Predictive Distributions of Outstanding Liabilities in General Insurance," Annals of Actuarial Science, Cambridge University Press, vol. 1(2), pages 221-270, September.
    3. Ayuso, Mercedes & Santolino, Miguel, 2007. "Predicting automobile claims bodily injury severity with sequential ordered logit models," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 71-83, July.
    4. England, P.D. & Verrall, R.J., 2002. "Stochastic Claims Reserving in General Insurance," British Actuarial Journal, Cambridge University Press, vol. 8(3), pages 443-518, August.
    5. Norberg, Ragnar, 1993. "Prediction of Outstanding Liabilities in Non-Life Insurance1," ASTIN Bulletin, Cambridge University Press, vol. 23(1), pages 95-115, May.
    6. Norberg, Ragnar, 1999. "Prediction of Outstanding Liabilities II. Model Variations and Extensions," ASTIN Bulletin, Cambridge University Press, vol. 29(1), pages 5-25, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mercedes Ayuso & Miguel Santolino, 2008. "Prediction of individual automobile RBNS claim reserves in the context of Solvency II," IREA Working Papers 200806, University of Barcelona, Research Institute of Applied Economics, revised May 2008.
    2. Francis Duval & Mathieu Pigeon, 2019. "Individual Loss Reserving Using a Gradient Boosting-Based Approach," Risks, MDPI, vol. 7(3), pages 1-18, July.
    3. Mat'uv{s} Maciak & Ostap Okhrin & Michal Pev{s}ta, 2019. "Infinitely Stochastic Micro Forecasting," Papers 1908.10636, arXiv.org, revised Sep 2019.
    4. Mat'uv{s} Maciak & Ostap Okhrin & Michal Pev{s}ta, 2018. "Dynamic and granular loss reserving with copulae," Papers 1801.01792, arXiv.org.
    5. Stephan M. Bischofberger, 2020. "In-Sample Hazard Forecasting Based on Survival Models with Operational Time," Risks, MDPI, vol. 8(1), pages 1-17, January.
    6. Maciak, Matúš & Okhrin, Ostap & Pešta, Michal, 2021. "Infinitely stochastic micro reserving," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 30-58.
    7. Miguel Santolino & Jean-Philippe Boucher, 2009. "Modelling the disability severity score in motor insurance claims: an application to the Spanish case," IREA Working Papers 200902, University of Barcelona, Research Institute of Applied Economics, revised Jan 2009.
    8. Pavel Zimmermann, 2011. "Possibilities of Individual Claim Reserve Risk Modeling," Acta Oeconomica Pragensia, Prague University of Economics and Business, vol. 2011(6), pages 46-64.
    9. Huang, Jinlong & Qiu, Chunjuan & Wu, Xianyi & Zhou, Xian, 2015. "An individual loss reserving model with independent reporting and settlement," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 232-245.
    10. Avanzi, Benjamin & Taylor, Greg & Wong, Bernard & Yang, Xinda, 2021. "On the modelling of multivariate counts with Cox processes and dependent shot noise intensities," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 9-24.
    11. Benjamin Avanzi & Gregory Clive Taylor & Bernard Wong & Xinda Yang, 2020. "On the modelling of multivariate counts with Cox processes and dependent shot noise intensities," Papers 2004.11169, arXiv.org, revised Dec 2020.
    12. Richard J. Verrall & Mario V. Wüthrich, 2016. "Understanding Reporting Delay in General Insurance," Risks, MDPI, vol. 4(3), pages 1-36, July.
    13. Crevecoeur, Jonas & Robben, Jens & Antonio, Katrien, 2022. "A hierarchical reserving model for reported non-life insurance claims," Insurance: Mathematics and Economics, Elsevier, vol. 104(C), pages 158-184.
    14. Crevecoeur, Jonas & Antonio, Katrien & Desmedt, Stijn & Masquelein, Alexandre, 2023. "Bridging the gap between pricing and reserving with an occurrence and development model for non-life insurance claims," ASTIN Bulletin, Cambridge University Press, vol. 53(2), pages 185-212, May.
    15. Avanzi, Benjamin & Wong, Bernard & Yang, Xinda, 2016. "A micro-level claim count model with overdispersion and reporting delays," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 1-14.
    16. Łukasz Delong & Mario V. Wüthrich, 2020. "Neural Networks for the Joint Development of Individual Payments and Claim Incurred," Risks, MDPI, vol. 8(2), pages 1-34, April.
    17. Avanzi, Benjamin & Taylor, Greg & Wang, Melantha & Wong, Bernard, 2021. "SynthETIC: An individual insurance claim simulator with feature control," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 296-308.
    18. Emmanuel Jordy Menvouta & Jolien Ponnet & Robin Van Oirbeek & Tim Verdonck, 2022. "mCube: Multinomial Micro-level reserving Model," Papers 2212.00101, arXiv.org.
    19. Gian Paolo Clemente & Nino Savelli & Diego Zappa, 2019. "Modelling Outstanding Claims with Mixed Compound Processes in Insurance," International Business Research, Canadian Center of Science and Education, vol. 12(3), pages 123-138, March.
    20. Crevecoeur, Jonas & Antonio, Katrien & Verbelen, Roel, 2019. "Modeling the number of hidden events subject to observation delay," European Journal of Operational Research, Elsevier, vol. 277(3), pages 930-944.

    More about this item

    Keywords

    automobile accident; Solvency II; bodily injury claims; individual reported but not settled reserve (RBNS). ; accidente de automóvil; Solvencia II; siniestros con daños corporales; reserva individual para siniestros pendientes de liquidación;
    All these keywords.

    JEL classification:

    • C35 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pab:rmcpee:v:6:y:2008:i:1:p:23-41. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Publicación Digital - UPO (email available below). General contact details of provider: https://edirc.repec.org/data/dmupoes.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.