0. We show by examples that there are: 1. quasiconcave, payoff secure games without pure strategy "!equilibria for small enough " > 0 (and hence, without pure strategy Nash equilibria), 2. quasiconcave, reciprocally upper semicontinuous games without pure strategy "!equilibria for small enough " > 0, and 3. payoff secure games whose mixed extension is not payoff secure. The last example, due to Sion and Wolfe [6], also shows that nonquasiconcave games that are payoff secure and reciprocally upper semicontinuous may fail to have mixed strategy equilibria.
(This abstract was borrowed from another version of this item.)"> 0. We show by examples that there are: 1. quasiconcave, payoff secure games without pure strategy "!equilibria for small enough " > 0 (and hence, without pure strategy Nash equilibria), 2. quasiconcave, reciprocally upper semicontinuous games without pure strategy "!equilibria for small enough " > 0, and 3. payoff secure games whose mixed extension is not payoff secure. The last example, due to Sion and Wolfe [6], also shows that nonquasiconcave games that are payoff secure and reciprocally upper semicontinuous may fail to have mixed strategy equilibria.
(This abstract was borrowed from another version of this item.)">
[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/spr/jogath/v33y2005i2p181-187.html
   My bibliography  Save this article

On the existence of equilibria in discontinuous games: three counterexamples

Author

Listed:
  • Guilherme Carmona
Abstract
We study whether we can weaken the conditions given in Reny [4] and still obtain existence of pure strategy Nash equilibria in quasiconcave normal form games, or, at least, existence of pure strategy "!equilibria for all " > 0. We show by examples that there are: 1. quasiconcave, payoff secure games without pure strategy "!equilibria for small enough " > 0 (and hence, without pure strategy Nash equilibria), 2. quasiconcave, reciprocally upper semicontinuous games without pure strategy "!equilibria for small enough " > 0, and 3. payoff secure games whose mixed extension is not payoff secure. The last example, due to Sion and Wolfe [6], also shows that nonquasiconcave games that are payoff secure and reciprocally upper semicontinuous may fail to have mixed strategy equilibria.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Guilherme Carmona, 2005. "On the existence of equilibria in discontinuous games: three counterexamples," International Journal of Game Theory, Springer;Game Theory Society, vol. 33(2), pages 181-187, June.
  • Handle: RePEc:spr:jogath:v:33:y:2005:i:2:p:181-187
    DOI: 10.1007/s001820400187
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s001820400187
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s001820400187?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Partha Dasgupta & Eric Maskin, 1986. "The Existence of Equilibrium in Discontinuous Economic Games, I: Theory," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 53(1), pages 1-26.
    2. Philip J. Reny, 1999. "On the Existence of Pure and Mixed Strategy Nash Equilibria in Discontinuous Games," Econometrica, Econometric Society, vol. 67(5), pages 1029-1056, September.
    3. Leo K. Simon, 1987. "Games with Discontinuous Payoffs," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 54(4), pages 569-597.
    4. Michael R. Baye & Guoqiang Tian & Jianxin Zhou, 1993. "Characterizations of the Existence of Equilibria in Games with Discontinuous and Non-quasiconcave Payoffs," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 60(4), pages 935-948.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Prokopovych, Pavlo & Yannelis, Nicholas C., 2014. "On the existence of mixed strategy Nash equilibria," Journal of Mathematical Economics, Elsevier, vol. 52(C), pages 87-97.
    2. Guilherme Carmona, 2006. "Polyhedral convexity and the existence of approximate equilibria in discontinuous games," Nova SBE Working Paper Series wp488, Universidade Nova de Lisboa, Nova School of Business and Economics.
    3. Philip J. Reny, 2016. "Nash equilibrium in discontinuous games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(3), pages 553-569, March.
    4. Pavlo Prokopovych & Nicholas C. Yannelis, 2012. "On Uniform Conditions for the Existence of Mixed Strategy Equilibria," Discussion Papers 48, Kyiv School of Economics.
    5. Paulo Klinger Monteiro & Frank H. Page Jr., 2005. "Uniform payoff security and Nash equilibrium in metric games," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00197491, HAL.
    6. Luciano I. de Castro, 2008. "Equilibria Existence in Regular Discontinuous Games," Discussion Papers 1463, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    7. Luciano Castro, 2011. "Equilibrium existence and approximation of regular discontinuous games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 48(1), pages 67-85, September.
    8. Philip J. Reny, 2020. "Nash Equilibrium in Discontinuous Games," Annual Review of Economics, Annual Reviews, vol. 12(1), pages 439-470, August.
    9. Pavlo Prokopovych, 2008. "A Short Proof of Reny's Existence Theorem for Payoff Secure Games," Discussion Papers 12, Kyiv School of Economics.
    10. Nessah, Rabia & Tian, Guoqiang, 2008. "Existence of Equilibria in Discontinuous Games," MPRA Paper 41206, University Library of Munich, Germany, revised Mar 2010.
    11. Capraro, Valerio & Scarsini, Marco, 2013. "Existence of equilibria in countable games: An algebraic approach," Games and Economic Behavior, Elsevier, vol. 79(C), pages 163-180.
    12. Rabia Nessah & Guoqiang Tian, 2008. "The Existence of Equilibria in Discontinuous and Nonconvex Games," Working Papers 2008-ECO-14, IESEG School of Management, revised Mar 2010.
    13. Oriol Carbonell-Nicolau, 2011. "The Existence of Perfect Equilibrium in Discontinuous Games," Games, MDPI, vol. 2(3), pages 1-22, July.
    14. Pavlo Prokopovych, 2011. "On equilibrium existence in payoff secure games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 48(1), pages 5-16, September.
    15. Monteiro, Paulo Klinger & Page Jr, Frank H., 2007. "Uniform payoff security and Nash equilibrium in compact games," Journal of Economic Theory, Elsevier, vol. 134(1), pages 566-575, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rabia Nessah & Guoqiang Tian, 2008. "The Existence of Equilibria in Discontinuous and Nonconvex Games," Working Papers 2008-ECO-14, IESEG School of Management, revised Mar 2010.
    2. Rabia Nessah & Guoqiang Tian, 2016. "On the existence of Nash equilibrium in discontinuous games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(3), pages 515-540, March.
    3. Tian, Guoqiang, 2015. "On the existence of equilibria in games with arbitrary strategy spaces and preferences," Journal of Mathematical Economics, Elsevier, vol. 60(C), pages 9-16.
    4. Oriol Carbonell-Nicolau & Richard McLean, 2014. "On the existence of Nash equilibrium in Bayesian games," Departmental Working Papers 201402, Rutgers University, Department of Economics.
    5. Nessah, Rabia & Tian, Guoqiang, 2008. "Existence of Equilibria in Discontinuous Games," MPRA Paper 41206, University Library of Munich, Germany, revised Mar 2010.
    6. Philip J. Reny, 2020. "Nash Equilibrium in Discontinuous Games," Annual Review of Economics, Annual Reviews, vol. 12(1), pages 439-470, August.
    7. Prokopovych, Pavlo & Yannelis, Nicholas C., 2014. "On the existence of mixed strategy Nash equilibria," Journal of Mathematical Economics, Elsevier, vol. 52(C), pages 87-97.
    8. Francesco Ciardiello, 2007. "Convexity on Nash Equilibria without Linear Structure," Quaderni DSEMS 15-2007, Dipartimento di Scienze Economiche, Matematiche e Statistiche, Universita' di Foggia.
    9. Philippe Bich & Rida Laraki, 2013. "On the Existence of Approximated Equilibria and Sharing-Rule Equilibria in Discontinuous Games," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00846143, HAL.
    10. Philip J. Reny, 2016. "Introduction to the symposium on discontinuous games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(3), pages 423-429, March.
    11. Philippe Bich & Rida Laraki, 2013. "On the Existence of Approximated Equilibria and Sharing-Rule Equilibria in Discontinuous Games," Working Papers hal-00846143, HAL.
    12. Rabia Nessah, 2022. "Weakly continuous security and nash equilibrium," Theory and Decision, Springer, vol. 93(4), pages 725-745, November.
    13. Oriol Carbonell-Nicolau & Richard P. McLean, 2018. "On the Existence of Nash Equilibrium in Bayesian Games," Mathematics of Operations Research, INFORMS, vol. 43(2), pages 100-129, February.
    14. Rabia Nessah, 2013. "Weakly Continuous Security in Discontinuous and Nonquasiconcave Games: Existence and Characterization," Working Papers 2013-ECO-20, IESEG School of Management.
    15. Pavlo Prokopovych, 2008. "A Short Proof of Reny's Existence Theorem for Payoff Secure Games," Discussion Papers 12, Kyiv School of Economics.
    16. Luciano I. de Castro, 2008. "Equilibria Existence in Regular Discontinuous Games," Discussion Papers 1463, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    17. Gatti, J.R.J., 2005. "A Note on the Existence of Nash Equilibrium in Games with Discontinuous Payoffs," Cambridge Working Papers in Economics 0510, Faculty of Economics, University of Cambridge.
    18. Allison, Blake A. & Bagh, Adib & Lepore, Jason J., 2018. "Sufficient conditions for weak reciprocal upper semi-continuity in mixed extensions of games," Journal of Mathematical Economics, Elsevier, vol. 74(C), pages 99-107.
    19. Holmberg, Pär & Newbery, David & Ralph, Daniel, 2013. "Supply function equilibria: Step functions and continuous representations," Journal of Economic Theory, Elsevier, vol. 148(4), pages 1509-1551.
    20. Rabia Nessah & Guoqiang Tian, 2013. "Existence of Solution of Minimax Inequalities, Equilibria in Games and Fixed Points Without Convexity and Compactness Assumptions," Journal of Optimization Theory and Applications, Springer, vol. 157(1), pages 75-95, April.

    More about this item

    Keywords

    discontinuous games; payoff security; reciprocal upper semicontinuity; nash equilibrium;
    All these keywords.

    JEL classification:

    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jogath:v:33:y:2005:i:2:p:181-187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.