[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/spd/journl/v67y2016i1p22-37.html
   My bibliography  Save this article

A Generalized Dynamic Factor Model for the U.S. Port Sector

Author

Listed:
  • Jason Angelopoulos

    (University of Piraeus, Department of Maritime Studies)

  • Costas I. Chlomoudis

    (University of Piraeus, Department of Maritime Studies)

Abstract
Although rarely available ports produce a polymorphic set of timely available monthly import, export, transport and labor utilization series, providing frequent snapshots of freight volumes either as being transferred between modes, or trans-shipped to secondary destinations. Utilizing monthly inflows and outflows of several cargo types as well as cruise passenger volumes from U.S ports, we: a) demonstrate the potential and the added value of information carried by common factors shaped by ports with respect to outlining the underlying forces of a national economy and b) provide competitive forecasts of disaggregate trade series from single ports (such as, e.g. outgoing or incoming TEUs) by exploiting factor dynamics, We test this concept in the context of Forni et al. (2005) one-sided generalized dynamic factor model, exploring the links between ports and the driving factors of the U.S. economy, as these are captured through its common and idiosyncratic components. Our model, employing 192 series from 31 major port complexes -covering 84.4% of TEUs and 60.1% of the dry bulk volume between 2005 and 2012-, displays a promising forecasting performance for individual ports and aggregate economic indicators versus benchmark models at 4-7 months ahead and explains a high fraction of the US GDP and Industrial Production indices variance.

Suggested Citation

  • Jason Angelopoulos & Costas I. Chlomoudis, 2017. "A Generalized Dynamic Factor Model for the U.S. Port Sector," SPOUDAI Journal of Economics and Business, SPOUDAI Journal of Economics and Business, University of Piraeus, vol. 67(1), pages 22-37, January-M.
  • Handle: RePEc:spd:journl:v:67:y:2016:i:1:p:22-37
    as

    Download full text from publisher

    File URL: https://spoudai.unipi.gr/index.php/spoudai/article/download/2570/2628/2570-3077-1-SM
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. S. Borağan Aruoba & Francis X. Diebold & M. Ayhan Kose & Marco E. Terrones, 2011. "Globalization, the Business Cycle, and Macroeconomic Monitoring," NBER International Seminar on Macroeconomics, University of Chicago Press, vol. 7(1), pages 245-286.
    2. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
    3. Doz, Catherine & Giannone, Domenico & Reichlin, Lucrezia, 2011. "A two-step estimator for large approximate dynamic factor models based on Kalman filtering," Journal of Econometrics, Elsevier, vol. 164(1), pages 188-205, September.
    4. Baxter, Marianne & Kouparitsas, Michael A., 2005. "Determinants of business cycle comovement: a robust analysis," Journal of Monetary Economics, Elsevier, vol. 52(1), pages 113-157, January.
    5. Christian Schumacher, 2007. "Forecasting German GDP using alternative factor models based on large datasets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(4), pages 271-302.
    6. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2010. "Are disaggregate data useful for factor analysis in forecasting French GDP?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 132-144.
    7. Kajal Lahiri & Wenxiong Yao, 2004. "A dynamic factor model of the coincident indicators for the US transportation sector," Applied Economics Letters, Taylor & Francis Journals, vol. 11(10), pages 595-600.
    8. Nikita Perevalov & Philipp Maier, 2010. "On the Advantages of Disaggregated Data: Insights from Forecasting the U.S. Economy in a Data-Rich Environment," Staff Working Papers 10-10, Bank of Canada.
    9. Dreger, Christian & Schumacher, Christian, 2002. "Estimating Large-Scale Factor Models for Economic Activity in Germany: Do They Outperform Simpler Models?," Discussion Paper Series 26321, Hamburg Institute of International Economics.
    10. Ard den Reijer, 2007. "Identifying Regional and Sectoral Dynamics of the Dutch Staffing Labour Cycle," DNB Working Papers 153, Netherlands Central Bank, Research Department.
    11. Forni, Mario, et al, 2001. "Coincident and Leading Indicators for the Euro Area," Economic Journal, Royal Economic Society, vol. 111(471), pages 62-85, May.
    12. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    13. Kitchen, John & Monaco, Ralph, 2003. "Real-Time Forecasting in Practice: The U.S. Treasury Staff's Real-Time GDP Forecast System," MPRA Paper 21068, University Library of Munich, Germany, revised Oct 2003.
    14. Lippi, Marco & Reichlin, Lucrezia & Hallin, Marc & Forni, Mario & Altissimo, Filippo & Cristadoro, Riccardo & Veronese, Giovanni & Bassanetti, Antonio, 2001. "EuroCOIN: A Real Time Coincident Indicator of the Euro Area Business Cycle," CEPR Discussion Papers 3108, C.E.P.R. Discussion Papers.
    15. repec:hal:journl:peer-00844811 is not listed on IDEAS
    16. Christophe van Nieuwenhuyze, 2006. "A Generalized Dynamic Factor Model for the Belgian Economy: Identification of the Business Cycle and GDP Growth Forecasts," Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2005(2), pages 213-247.
    17. Banerjee, Anindya & Marcellino, Massimiliano, 2006. "Are there any reliable leading indicators for US inflation and GDP growth?," International Journal of Forecasting, Elsevier, vol. 22(1), pages 137-151.
    18. George Kapetanios & Massimiliano Marcellino, 2009. "A parametric estimation method for dynamic factor models of large dimensions," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(2), pages 208-238, March.
    19. Viktors Ajevskis & Gundars Davidsons, 2008. "Dynamic Factor Models in Forecasting Latvia's Gross Domestic Product," Working Papers 2008/02, Latvijas Banka.
    20. Stock, James H. & Watson, Mark, 2011. "Dynamic Factor Models," Scholarly Articles 28469541, Harvard University Department of Economics.
    21. Hallin, Marc & Liska, Roman, 2007. "Determining the Number of Factors in the General Dynamic Factor Model," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 603-617, June.
    22. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    23. Ioannis Tsamourgelis & Persa Paflioti & Thomas Vitsounis, 2013. "Seaports Activity (A)synchronicity, Trade Intensity and Business Cycle Convergence: A Panel Data Analysis," International Journal of Maritime, Trade & Economic Issues (IJMTEI), International Journal of Maritime, Trade & Economic Issues (IJMTEI), vol. 0(1), pages 67-92.
    24. Christophe Van Nieuwenhuyze, 2006. "A generalised dynamic factor model for the Belgian economy - Useful business cycle indicators and GDP growth forecasts," Working Paper Research 80, National Bank of Belgium.
    25. Marcellino, Massimiliano, 2006. "Leading Indicators," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 16, pages 879-960, Elsevier.
    26. Ard H.J. den Reijer, 2005. "Forecasting Dutch GDP using Large Scale Factor Models," DNB Working Papers 028, Netherlands Central Bank, Research Department.
    27. Stéphanie Guichard & Elena Rusticelli, 2011. "A Dynamic Factor Model for World Trade Growth," OECD Economics Department Working Papers 874, OECD Publishing.
    28. Calista Cheung & Frédérick Demers, 2007. "Evaluating Forecasts from Factor Models for Canadian GDP Growth and Core Inflation," Staff Working Papers 07-8, Bank of Canada.
    29. Carriero, Andrea & Marcellino, Massimiliano, 2007. "A comparison of methods for the construction of composite coincident and leading indexes for the UK," International Journal of Forecasting, Elsevier, vol. 23(2), pages 219-236.
    30. Abdullah Alhassan, 2009. "A Coincident Indicator of the Gulf Cooperation Council (GCC) Business Cycle," IMF Working Papers 2009/073, International Monetary Fund.
    31. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    32. Alessi, Lucia & Barigozzi, Matteo & Capasso, Marco, 2010. "Improved penalization for determining the number of factors in approximate factor models," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1806-1813, December.
    33. Carriero, Andrea & Marcellino, Massimiliano, 2007. "A comparison of methods for the construction of composite coincident and leading indexes for the UK," International Journal of Forecasting, Elsevier, vol. 23(2), pages 219-236.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jason Angelopoulos, 2017. "Creating and assessing composite indicators: Dynamic applications for the port industry and seaborne trade," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 19(1), pages 126-159, March.
    2. Mario Forni & Alessandro Giovannelli & Marco Lippi & Stefano Soccorsi, 2018. "Dynamic factor model with infinite‐dimensional factor space: Forecasting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(5), pages 625-642, August.
    3. Sandra Eickmeier & Christina Ziegler, 2008. "How successful are dynamic factor models at forecasting output and inflation? A meta-analytic approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 237-265.
    4. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    5. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2010. "Are disaggregate data useful for factor analysis in forecasting French GDP?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 132-144.
    6. Rua, António, 2017. "A wavelet-based multivariate multiscale approach for forecasting," International Journal of Forecasting, Elsevier, vol. 33(3), pages 581-590.
    7. Van Nieuwenhuyze, Christophe & Benk, Szilard & Rünstler, Gerhard & Cristadoro, Riccardo & Den Reijer, Ard & Jakaitiene, Audrone & Jelonek, Piotr & Rua, António & Ruth, Karsten & Barhoumi, Karim, 2008. "Short-term forecasting of GDP using large monthly datasets: a pseudo real-time forecast evaluation exercise," Occasional Paper Series 84, European Central Bank.
    8. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2014. "Dynamic factor models: A review of the literature," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 73-107.
    9. Christian Schumacher, 2007. "Forecasting German GDP using alternative factor models based on large datasets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(4), pages 271-302.
    10. Daniel Armeanu & Jean Vasile Andrei & Leonard Lache & Mirela Panait, 2017. "A multifactor approach to forecasting Romanian gross domestic product (GDP) in the short run," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-23, July.
    11. In Choi, 2011. "Efficient Estimation of Nonstationary Factor Models," Working Papers 1101, Nam Duck-Woo Economic Research Institute, Sogang University (Former Research Institute for Market Economy), revised Jun 2011.
    12. Viktors Ajevskis & Gundars Davidsons, 2008. "Dynamic Factor Models in Forecasting Latvia's Gross Domestic Product," Working Papers 2008/02, Latvijas Banka.
    13. Karen Poghosyan & Ruben Poghosyan, 2021. "On the Applicability of Dynamic Factor Models for Forecasting Real GDP Growth in Armenia," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 71(1), pages 52-79, June.
    14. Gupta, Rangan & Kabundi, Alain, 2011. "A large factor model for forecasting macroeconomic variables in South Africa," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1076-1088, October.
    15. Gupta, Rangan & Kabundi, Alain & Miller, Stephen M., 2011. "Forecasting the US real house price index: Structural and non-structural models with and without fundamentals," Economic Modelling, Elsevier, vol. 28(4), pages 2013-2021, July.
    16. Katerina Arnostova & David Havrlant & Luboš Rùžièka & Peter Tóth, 2011. "Short-Term Forecasting of Czech Quarterly GDP Using Monthly Indicators," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 61(6), pages 566-583, December.
    17. Antipa, Pamfili & Barhoumi, Karim & Brunhes-Lesage, Véronique & Darné, Olivier, 2012. "Nowcasting German GDP: A comparison of bridge and factor models," Journal of Policy Modeling, Elsevier, vol. 34(6), pages 864-878.
    18. In Choi & Dukpa Kim & Yun Jung Kim & Noh‐Sun Kwark, 2018. "A multilevel factor model: Identification, asymptotic theory and applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(3), pages 355-377, April.
    19. Ergemen, Yunus Emre & Rodríguez-Caballero, C. Vladimir, 2023. "Estimation of a dynamic multi-level factor model with possible long-range dependence," International Journal of Forecasting, Elsevier, vol. 39(1), pages 405-430.
    20. Forni, Mario & Di Bonaventura, Luca & Pattarin, Francesco, 2018. "The Forcasting Performance of Dynamic Factor Models with Vintage Data," CEPR Discussion Papers 13034, C.E.P.R. Discussion Papers.

    More about this item

    Keywords

    dynamic factor models; U.S ports; trade; forecasting;
    All these keywords.

    JEL classification:

    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • F47 - International Economics - - Macroeconomic Aspects of International Trade and Finance - - - Forecasting and Simulation: Models and Applications
    • L99 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spd:journl:v:67:y:2016:i:1:p:22-37. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SPOUDAI Journal of Economics and Business (email available below). General contact details of provider: https://edirc.repec.org/data/depirgr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.