[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/ses/arsjes/2015-ii-2.html
   My bibliography  Save this article

Linking Europe: The Role of the Swiss Electricity Transmission Grid until 2050

Author

Listed:
  • Ingmar Schlecht
  • Hannes Weigt
Abstract
The aim of this paper is to evaluate the role of the Swiss electricity transmission system and the planned network extensions in the context of Central European electricity market developments and thereby the Swiss and European energy transitions. In addition, we conduct a sensitivity analysis of delayed grid investments for Swiss and European network projects, respectively. By utilizing a numerical model representation of the Swiss electricity market Swissmod we derive a quantification of the different effects and developments up to 2050. In summary, the Central European market will largely be influenced by the significant increase in intermittent renewable generation. Whereas current power flow patterns are mostly from the Northern markets towards Italy using Switzerland as a transit hub, the large share of solar capacities in 2050 will lead to a high variability on shorter timeframes. While Switzerland will remain a transit hub, the import and export flows will vary with season and daytime. The potential costs and system impacts due to delayed network investments are rather modest in comparison to the overall generation costs but can nevertheless sum to 700 million per year highlighting the importance of network extension to improve cross-regional energy exchange.

Suggested Citation

  • Ingmar Schlecht & Hannes Weigt, 2015. "Linking Europe: The Role of the Swiss Electricity Transmission Grid until 2050," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 151(II), pages 39-79, June.
  • Handle: RePEc:ses:arsjes:2015-ii-2
    as

    Download full text from publisher

    File URL: http://www.sjes.ch/papers/2015-II-2.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fürsch, Michaela & Hagspiel, Simeon & Jägemann, Cosima & Nagl, Stephan & Lindenberger, Dietmar & Tröster, Eckehard, 2013. "The role of grid extensions in a cost-efficient transformation of the European electricity system until 2050," Applied Energy, Elsevier, vol. 104(C), pages 642-652.
    2. Nicole A. Mathys & Philippe Thalmann & Marc Vielle, 2012. "Modelling Contributions to the Swiss Energy and Environmental Challenge," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 148(II), pages 97-109, June.
    3. Lion Hirth, 2013. "The Market Value of Variable Renewables. The Effect of Solar and Wind Power Variability on their Relative Price," RSCAS Working Papers 2013/36, European University Institute.
    4. Hirth, Lion, 2013. "The market value of variable renewables," Energy Economics, Elsevier, vol. 38(C), pages 218-236.
    5. Jonas Egerer & Clemens Gerbaulet & Richard Ihlenburg & Friedrich Kunz & Benjamin Reinhard & Christian von Hirschhausen & Alexander Weber & Jens Weibezahn, 2014. "Electricity Sector Data for Policy-Relevant Modeling: Data Documentation and Applications to the German and European Electricity Markets," Data Documentation 72, DIW Berlin, German Institute for Economic Research.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Betz, Regina & Geissmann, Thomas & Kosch, Mirjam & Schillinger, Moritz & Weigt, Hannes, 2019. "The Design of Variable Water Fees and its Impact on Swiss Hydropower Companies and Resource Owners," Working papers 2019/12, Faculty of Business and Economics - University of Basel.
    2. Barry, Michael & Baur, Patrick & Gaudard, Ludovic & Giuliani, Gianluca & Hediger, Werner & Romerio, Franco & Schillinger, Moritz & Schumann, René & Voegeli, Gillaume & Weigt, Hannes, 2015. "The Future of Swiss Hydropower A Review on Drivers and Uncertainties," Working papers 2015/11, Faculty of Business and Economics - University of Basel.
    3. Schillinger, Moritz, 2019. "Balancing Market Design and Opportunity Cost - The Swiss Case," Working papers 2019/14, Faculty of Business and Economics - University of Basel.
    4. Dominic Samoita & Charles Nzila & Poul Alberg Østergaard & Arne Remmen, 2020. "Barriers and Solutions for Increasing the Integration of Solar Photovoltaic in Kenya’s Electricity Mix," Energies, MDPI, vol. 13(20), pages 1-17, October.
    5. Vögelin, Philipp & Georges, Gil & Boulouchos, Konstatinos, 2017. "Design analysis of gas engine combined heat and power plants (CHP) for building and industry heat demand under varying price structures," Energy, Elsevier, vol. 125(C), pages 356-366.
    6. Jonas Egerer, 2016. "Open Source Electricity Model for Germany (ELMOD-DE)," Data Documentation 83, DIW Berlin, German Institute for Economic Research.
    7. Runge, Philipp & Sölch, Christian & Albert, Jakob & Wasserscheid, Peter & Zöttl, Gregor & Grimm, Veronika, 2019. "Economic comparison of different electric fuels for energy scenarios in 2035," Applied Energy, Elsevier, vol. 233, pages 1078-1093.
    8. Savvidis, Georgios & Siala, Kais & Weissbart, Christoph & Schmidt, Lukas & Borggrefe, Frieder & Kumar, Subhash & Pittel, Karen & Madlener, Reinhard & Hufendiek, Kai, 2019. "The gap between energy policy challenges and model capabilities," Energy Policy, Elsevier, vol. 125(C), pages 503-520.
    9. Bartlett, Stuart & Dujardin, Jérôme & Kahl, Annelen & Kruyt, Bert & Manso, Pedro & Lehning, Michael, 2018. "Charting the course: A possible route to a fully renewable Swiss power system," Energy, Elsevier, vol. 163(C), pages 942-955.
    10. Wiese, Frauke & Schlecht, Ingmar & Bunke, Wolf-Dieter & Gerbaulet, Clemens & Hirth, Lion & Jahn, Martin & Kunz, Friedrich & Lorenz, Casimir & Mühlenpfordt, Jonathan & Reimann, Juliane & Schill, Wolf-P, 2019. "Open Power System Data – Frictionless data for electricity system modelling," Applied Energy, Elsevier, vol. 236(C), pages 401-409.
    11. Schillinger, Moritz, 2020. "Balancing-market design and opportunity cost: The Swiss case," Utilities Policy, Elsevier, vol. 64(C).
    12. Philipp Emanuel Hirsch & Moritz Schillinger & Katharina Appoloni & Patricia Burkhardt-Holm & Hannes Weigt, 2016. "Integrating Economic and Ecological Benchmarking for a Sustainable Development of Hydropower," Sustainability, MDPI, vol. 8(9), pages 1-20, August.
    13. Moritz Schillinger & Hannes Weigt & Philipp Emanuel Hirsch, 2020. "Environmental flows or economic woes—Hydropower under global energy market changes," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-19, August.
    14. Jonas Savelsberg & Moritz Schillinger & Ingmar Schlecht & Hannes Weigt, 2018. "The Impact of Climate Change on Swiss Hydropower," Sustainability, MDPI, vol. 10(7), pages 1-23, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gugler, Klaus & Haxhimusa, Adhurim, 2019. "Market integration and technology mix: Evidence from the German and French electricity markets," Energy Policy, Elsevier, vol. 126(C), pages 30-46.
    2. Steinhäuser, J. Micha & Eisenack, Klaus, 2020. "How market design shapes the spatial distribution of power plant curtailment costs," Energy Policy, Elsevier, vol. 144(C).
    3. Reichenberg, Lina & Hedenus, Fredrik & Odenberger, Mikael & Johnsson, Filip, 2018. "The marginal system LCOE of variable renewables – Evaluating high penetration levels of wind and solar in Europe," Energy, Elsevier, vol. 152(C), pages 914-924.
    4. Thure Traber & Claudia Kemfert, 2015. "Renewable Energy Support in Germany: Surcharge Development and the Impact of a Decentralized Capacity Mechanism," Discussion Papers of DIW Berlin 1452, DIW Berlin, German Institute for Economic Research.
    5. Javier L'opez Prol & Wolf-Peter Schill, 2020. "The Economics of Variable Renewables and Electricity Storage," Papers 2012.15371, arXiv.org.
    6. Ueckerdt, Falko & Pietzcker, Robert & Scholz, Yvonne & Stetter, Daniel & Giannousakis, Anastasis & Luderer, Gunnar, 2017. "Decarbonizing global power supply under region-specific consideration of challenges and options of integrating variable renewables in the REMIND model," Energy Economics, Elsevier, vol. 64(C), pages 665-684.
    7. Pietzcker, Robert C. & Ueckerdt, Falko & Carrara, Samuel & de Boer, Harmen Sytze & Després, Jacques & Fujimori, Shinichiro & Johnson, Nils & Kitous, Alban & Scholz, Yvonne & Sullivan, Patrick & Ludere, 2017. "System integration of wind and solar power in integrated assessment models: A cross-model evaluation of new approaches," Energy Economics, Elsevier, vol. 64(C), pages 583-599.
    8. Deetjen, Thomas A. & Garrison, Jared B. & Rhodes, Joshua D. & Webber, Michael E., 2016. "Solar PV integration cost variation due to array orientation and geographic location in the Electric Reliability Council of Texas," Applied Energy, Elsevier, vol. 180(C), pages 607-616.
    9. Keppler, Jan Horst & Quemin, Simon & Saguan, Marcelo, 2022. "Why the sustainable provision of low-carbon electricity needs hybrid markets," Energy Policy, Elsevier, vol. 171(C).
    10. Christoph Wolter & Henrik Klinge Jacobsen & Lorenzo Zeni & Georgios Rogdakis & Nicolaos A. Cutululis, 2020. "Overplanting in offshore wind power plants in different regulatory regimes," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(3), May.
    11. Csereklyei, Zsuzsanna & Qu, Songze & Ancev, Tihomir, 2019. "The effect of wind and solar power generation on wholesale electricity prices in Australia," Energy Policy, Elsevier, vol. 131(C), pages 358-369.
    12. Simshauser, P., 2019. "On the impact of government-initiated CfD’s in Australia’s National Electricity Market," Cambridge Working Papers in Economics 1901, Faculty of Economics, University of Cambridge.
    13. Wang, Jingxing & Chung, Seokhyun & AlShelahi, Abdullah & Kontar, Raed & Byon, Eunshin & Saigal, Romesh, 2021. "Look-ahead decision making for renewable energy: A dynamic “predict and store” approach," Applied Energy, Elsevier, vol. 296(C).
    14. Thao Pham & Killian Lemoine, 2020. "Impacts of subsidized renewable electricity generation on spot market prices in Germany : Evidence from a GARCH model with panel data," Working Papers hal-02568268, HAL.
    15. Curtis, John & Lynch, Muireann Á. & Zubiate, Laura, 2016. "The impact of the North Atlantic Oscillation on electricity markets: A case study on Ireland," Energy Economics, Elsevier, vol. 58(C), pages 186-198.
    16. Wilkinson, Sam & Maticka, Martin J. & Liu, Yue & John, Michele, 2021. "The duck curve in a drying pond: The impact of rooftop PV on the Western Australian electricity market transition," Utilities Policy, Elsevier, vol. 71(C).
    17. Christopher Kath & Florian Ziel, 2018. "The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts," Papers 1811.08604, arXiv.org.
    18. Klie, Leo & Madlener, Reinhard, 2022. "Optimal configuration and diversification of wind turbines: A hybrid approach to improve the penetration of wind power," Energy Economics, Elsevier, vol. 105(C).
    19. Merrick, James H. & Bistline, John E.T. & Blanford, Geoffrey J., 2024. "On representation of energy storage in electricity planning models," Energy Economics, Elsevier, vol. 136(C).
    20. Mwampashi, Muthe Mathias & Nikitopoulos, Christina Sklibosios & Konstandatos, Otto & Rai, Alan, 2021. "Wind generation and the dynamics of electricity prices in Australia," Energy Economics, Elsevier, vol. 103(C).

    More about this item

    Keywords

    Switzerland; energy transition; network extension; investment delay;
    All these keywords.

    JEL classification:

    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ses:arsjes:2015-ii-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kurt Schmidheiny (email available below). General contact details of provider: https://edirc.repec.org/data/sgvssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.