[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/nea/journl/y2019i44p77-125.html
   My bibliography  Save this article

Models of learning in games: An overview

Author

Listed:
  • Chernov, G.

    (HSE laboratory for experimental and behavioral economics, Moscow, Russia
    Institute of Psychology of Russian Academy of Sciences, Moscow, Russia)

  • Susin, I.

    (HSE laboratory for experimental and behavioral economics, Moscow, Russia)

Abstract
This survey analyzes central ideas and the current state of the economic theory of learning in games. In game theory learning can be thought of as both an alternative to equilibria and as a way to better understand the nature of equilibria. Outside of game theory, theory of learning shows economic theory (for example, the classic Cournot oligopoly) in a new light, provides interesting theoretical problems, is nontrivial from econometric perspective. It can be studied with experimental methods. It also links economics to unexpected scientific disciplines: biology, philosophy of rationality and computer science. However, existing surveys are not particularly accessible to beginners and are not accessible at all in Russian. This survey intends to fill these gaps. It can serve both as an introduction and as a short reference. We analyze issues of classification as well as the models themselves. Theoretical descriptions are illustrated with concrete examples. Special attention is devoted to the empirical and experimental work. We also draw conclusions and hypothesize on perspectives of the field and its future role in economic theory.

Suggested Citation

  • Chernov, G. & Susin, I., 2019. "Models of learning in games: An overview," Journal of the New Economic Association, New Economic Association, vol. 44(4), pages 77-125.
  • Handle: RePEc:nea:journl:y:2019:i:44:p:77-125
    DOI: 10.31737/2221-2264-2019-44-4-3
    as

    Download full text from publisher

    File URL: http://www.econorus.org/repec/journl/2019-44-77-125r.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.31737/2221-2264-2019-44-4-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fudenberg, Drew & Levine, David, 1998. "Learning in games," European Economic Review, Elsevier, vol. 42(3-5), pages 631-639, May.
    2. Ulrich Doraszelski & Gregory Lewis & Ariel Pakes, 2018. "Just Starting Out: Learning and Equilibrium in a New Market," American Economic Review, American Economic Association, vol. 108(3), pages 565-615, March.
    3. Erev, Ido & Roth, Alvin E, 1998. "Predicting How People Play Games: Reinforcement Learning in Experimental Games with Unique, Mixed Strategy Equilibria," American Economic Review, American Economic Association, vol. 88(4), pages 848-881, September.
    4. Sergiu Hart & Andreu Mas-Colell, 2013. "A General Class Of Adaptive Strategies," World Scientific Book Chapters, in: Simple Adaptive Strategies From Regret-Matching to Uncoupled Dynamics, chapter 3, pages 47-76, World Scientific Publishing Co. Pte. Ltd..
    5. Dean Foster & H Peyton Young, 1999. "On the Impossibility of Predicting the Behavior of Rational Agents," Economics Working Paper Archive 423, The Johns Hopkins University,Department of Economics, revised Jun 2001.
    6. Basu, Kaushik & Weibull, Jorgen W., 1991. "Strategy subsets closed under rational behavior," Economics Letters, Elsevier, vol. 36(2), pages 141-146, June.
    7. Kreps,David M. & Wallis,Kenneth F. (ed.), 1997. "Advances in Economics and Econometrics: Theory and Applications," Cambridge Books, Cambridge University Press, number 9780521589819.
    8. Kalai, Ehud & Lehrer, Ehud, 1993. "Rational Learning Leads to Nash Equilibrium," Econometrica, Econometric Society, vol. 61(5), pages 1019-1045, September.
    9. Rothschild, Michael, 1974. "A two-armed bandit theory of market pricing," Journal of Economic Theory, Elsevier, vol. 9(2), pages 185-202, October.
    10. Aumann, Robert J, 1987. "Correlated Equilibrium as an Expression of Bayesian Rationality," Econometrica, Econometric Society, vol. 55(1), pages 1-18, January.
    11. Drew Fudenberg & David K. Levine, 2009. "Learning and Equilibrium," Annual Review of Economics, Annual Reviews, vol. 1(1), pages 385-420, May.
    12. Ed Hopkins, 2002. "Two Competing Models of How People Learn in Games," Econometrica, Econometric Society, vol. 70(6), pages 2141-2166, November.
    13. Young, H. Peyton, 2004. "Strategic Learning and its Limits," OUP Catalogue, Oxford University Press, number 9780199269181.
    14. Selten, Reinhard & Stoecker, Rolf, 1986. "End behavior in sequences of finite Prisoner's Dilemma supergames A learning theory approach," Journal of Economic Behavior & Organization, Elsevier, vol. 7(1), pages 47-70, March.
    15. Roth, Alvin E. & Erev, Ido, 1995. "Learning in extensive-form games: Experimental data and simple dynamic models in the intermediate term," Games and Economic Behavior, Elsevier, vol. 8(1), pages 164-212.
    16. Ross Cressman, 2003. "Evolutionary Dynamics and Extensive Form Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262033054, April.
    17. Reinhard Selten & Klaus Abbink & Ricarda Cox, 2005. "Learning Direction Theory and the Winner’s Curse," Experimental Economics, Springer;Economic Science Association, vol. 8(1), pages 5-20, April.
    18. Colin Camerer & Teck-Hua Ho, 1999. "Experience-weighted Attraction Learning in Normal Form Games," Econometrica, Econometric Society, vol. 67(4), pages 827-874, July.
    19. Mikhail Anufriev & Jasmina Arifovic & John Ledyard & Valentyn Panchenko, 2013. "Efficiency of continuous double auctions under individual evolutionary learning with full or limited information," Journal of Evolutionary Economics, Springer, vol. 23(3), pages 539-573, July.
    20. David Cooper & John Kagel, 2008. "Learning and transfer in signaling games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 34(3), pages 415-439, March.
    21. Benaim, Michel & Hirsch, Morris W., 1999. "Mixed Equilibria and Dynamical Systems Arising from Fictitious Play in Perturbed Games," Games and Economic Behavior, Elsevier, vol. 29(1-2), pages 36-72, October.
    22. Drew Fudenberg & David K. Levine, 1998. "The Theory of Learning in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061945, April.
    23. John H. Nachbar, 2005. "Beliefs in Repeated Games," Econometrica, Econometric Society, vol. 73(2), pages 459-480, March.
    24. Nagel, Rosemarie, 1995. "Unraveling in Guessing Games: An Experimental Study," American Economic Review, American Economic Association, vol. 85(5), pages 1313-1326, December.
    25. Hofbauer, Josef & Hopkins, Ed, 2005. "Learning in perturbed asymmetric games," Games and Economic Behavior, Elsevier, vol. 52(1), pages 133-152, July.
    26. Peter Duersch & Albert Kolb & Jörg Oechssler & Burkhard Schipper, 2010. "Rage against the machines: how subjects play against learning algorithms," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 43(3), pages 407-430, June.
    27. Fudenberg, Drew & Levine, David K, 1993. "Steady State Learning and Nash Equilibrium," Econometrica, Econometric Society, vol. 61(3), pages 547-573, May.
    28. Kreps,David M. & Wallis,Kenneth F. (ed.), 1997. "Advances in Economics and Econometrics: Theory and Applications," Cambridge Books, Cambridge University Press, number 9780521589833.
    29. Timothy C. Salmon, 2001. "An Evaluation of Econometric Models of Adaptive Learning," Econometrica, Econometric Society, vol. 69(6), pages 1597-1628, November.
    30. Foster, Dean P. & Vohra, Rakesh V., 1997. "Calibrated Learning and Correlated Equilibrium," Games and Economic Behavior, Elsevier, vol. 21(1-2), pages 40-55, October.
    31. Beggs, A.W., 2005. "On the convergence of reinforcement learning," Journal of Economic Theory, Elsevier, vol. 122(1), pages 1-36, May.
    32. Jasmina Arifovic & John Ledyard, 2018. "Learning to alternate," Experimental Economics, Springer;Economic Science Association, vol. 21(3), pages 692-721, September.
    33. Cheung, Yin-Wong & Friedman, Daniel, 1997. "Individual Learning in Normal Form Games: Some Laboratory Results," Games and Economic Behavior, Elsevier, vol. 19(1), pages 46-76, April.
    34. Ho, Teck H. & Camerer, Colin F. & Chong, Juin-Kuan, 2007. "Self-tuning experience weighted attraction learning in games," Journal of Economic Theory, Elsevier, vol. 133(1), pages 177-198, March.
    35. Timothy Cason & Daniel Friedman, 1999. "Learning in a Laboratory Market with Random Supply and Demand," Experimental Economics, Springer;Economic Science Association, vol. 2(1), pages 77-98, August.
    36. Ioannou, Christos A. & Romero, Julian, 2014. "A generalized approach to belief learning in repeated games," Games and Economic Behavior, Elsevier, vol. 87(C), pages 178-203.
    37. Jasmina Arifovic & John Ledyard, 2004. "Scaling Up Learning Models in Public Good Games," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 6(2), pages 203-238, May.
    38. Reinhard Selten & Klaus Abbink & Ricarda Cox, 2005. "Learning Direction Theory and the Winner’s Curse," Experimental Economics, Springer;Economic Science Association, vol. 8(1), pages 5-20, April.
    39. Arifovic, Jasmina & McKelvey, Richard D. & Pevnitskaya, Svetlana, 2006. "An initial implementation of the Turing tournament to learning in repeated two-person games," Games and Economic Behavior, Elsevier, vol. 57(1), pages 93-122, October.
    40. Kreps,David M. & Wallis,Kenneth F. (ed.), 1997. "Advances in Economics and Econometrics: Theory and Applications," Cambridge Books, Cambridge University Press, number 9780521589826.
    41. Guth, Werner & Schmittberger, Rolf & Schwarze, Bernd, 1982. "An experimental analysis of ultimatum bargaining," Journal of Economic Behavior & Organization, Elsevier, vol. 3(4), pages 367-388, December.
    42. Ramsey, Frank P., 1926. "Truth and Probability," Histoy of Economic Thought Chapters, in: Braithwaite, R. B. (ed.),The Foundations of Mathematics and other Logical Essays, chapter 7, pages 156-198, McMaster University Archive for the History of Economic Thought.
    43. Nachbar, J H, 1990. ""Evolutionary" Selection Dynamics in Games: Convergence and Limit Properties," International Journal of Game Theory, Springer;Game Theory Society, vol. 19(1), pages 59-89.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Camerer, Colin F. & Ho, Teck-Hua, 2015. "Behavioral Game Theory Experiments and Modeling," Handbook of Game Theory with Economic Applications,, Elsevier.
    2. Chmura, Thorsten & Goerg, Sebastian J. & Selten, Reinhard, 2012. "Learning in experimental 2×2 games," Games and Economic Behavior, Elsevier, vol. 76(1), pages 44-73.
    3. Burkhard C. Schipper, 2022. "Strategic Teaching and Learning in Games," American Economic Journal: Microeconomics, American Economic Association, vol. 14(3), pages 321-352, August.
    4. Ido Erev & Eyal Ert & Alvin E. Roth, 2010. "A Choice Prediction Competition for Market Entry Games: An Introduction," Games, MDPI, vol. 1(2), pages 1-20, May.
    5. Pangallo, Marco & Sanders, James B.T. & Galla, Tobias & Farmer, J. Doyne, 2022. "Towards a taxonomy of learning dynamics in 2 × 2 games," Games and Economic Behavior, Elsevier, vol. 132(C), pages 1-21.
    6. Burkhard Schipper, 2015. "Strategic teaching and learning in games," Working Papers 151, University of California, Davis, Department of Economics.
    7. Benaïm, Michel & Hofbauer, Josef & Hopkins, Ed, 2009. "Learning in games with unstable equilibria," Journal of Economic Theory, Elsevier, vol. 144(4), pages 1694-1709, July.
    8. Xie, Erhao, 2021. "Empirical properties and identification of adaptive learning models in behavioral game theory," Journal of Economic Behavior & Organization, Elsevier, vol. 191(C), pages 798-821.
    9. Jonathan Newton, 2018. "Evolutionary Game Theory: A Renaissance," Games, MDPI, vol. 9(2), pages 1-67, May.
    10. Ho, Teck H. & Camerer, Colin F. & Chong, Juin-Kuan, 2007. "Self-tuning experience weighted attraction learning in games," Journal of Economic Theory, Elsevier, vol. 133(1), pages 177-198, March.
    11. Christoph March, 2011. "Adaptive social learning," Working Papers halshs-00572528, HAL.
    12. Jim Engle-Warnick & Ed Hopkins, 2006. "A Simple Test of Learning Theory," Levine's Bibliography 321307000000000724, UCLA Department of Economics.
    13. Teck H. Ho & Xin Wang & Colin F. Camerer, 2008. "Individual Differences in EWA Learning with Partial Payoff Information," Economic Journal, Royal Economic Society, vol. 118(525), pages 37-59, January.
    14. Teck H Ho & Colin Camerer & Juin-Kuan Chong, 2003. "Functional EWA: A one-parameter theory of learning in games," Levine's Working Paper Archive 506439000000000514, David K. Levine.
    15. Erhao Xie, 2019. "Monetary Payoff and Utility Function in Adaptive Learning Models," Staff Working Papers 19-50, Bank of Canada.
    16. Cason, Timothy N. & Friedman, Daniel & Hopkins, Ed, 2010. "Testing the TASP: An experimental investigation of learning in games with unstable equilibria," Journal of Economic Theory, Elsevier, vol. 145(6), pages 2309-2331, November.
    17. Mohlin, Erik & Östling, Robert & Wang, Joseph Tao-yi, 2020. "Learning by similarity-weighted imitation in winner-takes-all games," Games and Economic Behavior, Elsevier, vol. 120(C), pages 225-245.
    18. Ed Hopkins, 2002. "Two Competing Models of How People Learn in Games," Econometrica, Econometric Society, vol. 70(6), pages 2141-2166, November.
    19. Hofbauer, Josef & Hopkins, Ed, 2005. "Learning in perturbed asymmetric games," Games and Economic Behavior, Elsevier, vol. 52(1), pages 133-152, July.
    20. Fogale, Alberto & Pellizzari, Paolo & Warglien, Massimo, 2007. "Learning and equilibrium selection in a coordination game with heterogeneous agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 519-527.

    More about this item

    Keywords

    reinforcement learning; fictitious play; rational learning; bounded rationality; models of learning;
    All these keywords.

    JEL classification:

    • C70 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - General
    • D84 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Expectations; Speculations

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nea:journl:y:2019:i:44:p:77-125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alexey Tcharykov (email available below). General contact details of provider: https://edirc.repec.org/data/nearuea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.