[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/oup/jfinec/v22y2024i5p1588-1615..html
   My bibliography  Save this article

Jump Clustering, Information Flows, and Stock Price Efficiency†

Author

Listed:
  • Jian Chen
Abstract
We study the clustering behavior of stock return jumps modeled by a self/cross-exciting process embedded in a stochastic volatility model. Based on the model estimates, we propose a novel measurement of stock price efficiency characterized by the extent of jump clustering that stock returns exhibit. This measurement demonstrates the capability of capturing the speed at which stock prices assimilate new information, especially at the firm-specific level. Furthermore, we assess the predictability of self-exciting (clustered) jumps in stock returns. We employ a particle filter to sample latent states in the out-of-sample period and perform one-step-ahead probabilistic forecasting on upcoming jumps. We introduce a new statistic derived from predicted probabilities of positive and negative jumps, which has been shown to be effective in return predictions.

Suggested Citation

  • Jian Chen, 2024. "Jump Clustering, Information Flows, and Stock Price Efficiency†," Journal of Financial Econometrics, Oxford University Press, vol. 22(5), pages 1588-1615.
  • Handle: RePEc:oup:jfinec:v:22:y:2024:i:5:p:1588-1615.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/jjfinec/nbae009
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Bayesian inference; information flows; jump clustering; jump prediction; stock price efficiency;
    All these keywords.

    JEL classification:

    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:jfinec:v:22:y:2024:i:5:p:1588-1615.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/sofieea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.