[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/oup/jfinec/v21y2023i5p1590-1646..html
   My bibliography  Save this article

Quantile Spectral Beta: A Tale of Tail Risks, Investment Horizons, and Asset Prices

Author

Listed:
  • Jozef Baruník
  • Matěj Nevrla
Abstract
This article investigates how two important sources of risk—market tail risk (TR) and extreme market volatility risk—are priced into the cross-section of asset returns across various investment horizons. To identify such risks, we propose a quantile spectral (QS) beta representation of risk based on the decomposition of covariance between indicator functions that capture fluctuations over various frequencies. We study the asymptotic behavior of the proposed estimators of such risk. Empirically, we find that TR is a short-term phenomenon, whereas extreme volatility risk is priced by investors in the long term when pricing a cross-section of individual stocks. In addition, we study popular industry, size and value, profit, investment, or book-to-market portfolios, as well as portfolios constructed from various asset classes, portfolios sorted on cash flow duration, and other strategies. These results reveal that tail-dependent and horizon-specific risks are priced heterogeneously across datasets and are important sources of risk for investors.

Suggested Citation

  • Jozef Baruník & Matěj Nevrla, 2023. "Quantile Spectral Beta: A Tale of Tail Risks, Investment Horizons, and Asset Prices," Journal of Financial Econometrics, Oxford University Press, vol. 21(5), pages 1590-1646.
  • Handle: RePEc:oup:jfinec:v:21:y:2023:i:5:p:1590-1646.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/jjfinec/nbac017
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Manski, Charles F., 1986. "Ordinal Utility Models Of Decision Making Under Uncertainty," SSRI Workshop Series 292682, University of Wisconsin-Madison, Social Systems Research Institute.
    2. Gilbert W. Bassett, 2004. "Pessimistic Portfolio Allocation and Choquet Expected Utility," Journal of Financial Econometrics, Oxford University Press, vol. 2(4), pages 477-492.
    3. Yaari, Menahem E, 1987. "The Dual Theory of Choice under Risk," Econometrica, Econometric Society, vol. 55(1), pages 95-115, January.
    4. Polkovnichenko, Valery & Zhao, Feng, 2013. "Probability weighting functions implied in options prices," Journal of Financial Economics, Elsevier, vol. 107(3), pages 580-609.
    5. Jennifer Conrad & Robert F. Dittmar & Eric Ghysels, 2013. "Ex Ante Skewness and Expected Stock Returns," Journal of Finance, American Finance Association, vol. 68(1), pages 85-124, February.
    6. Ian Dew-Becker & Stefano Giglio, 2016. "Asset Pricing in the Frequency Domain: Theory and Empirics," The Review of Financial Studies, Society for Financial Studies, vol. 29(8), pages 2029-2068.
    7. Tim Bollerslev & Viktor Todorov, 2011. "Tails, Fears, and Risk Premia," Journal of Finance, American Finance Association, vol. 66(6), pages 2165-2211, December.
    8. Eric Ghysels & Alberto Plazzi & Rossen Valkanov, 2016. "Why Invest in Emerging Markets? The Role of Conditional Return Asymmetry," Journal of Finance, American Finance Association, vol. 71(5), pages 2145-2192, October.
    9. Larry G. Epstein & Stanley E. Zin, 2013. "Substitution, risk aversion and the temporal behavior of consumption and asset returns: A theoretical framework," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 12, pages 207-239, World Scientific Publishing Co. Pte. Ltd..
    10. Tobias Adrian & Markus K. Brunnermeier, 2016. "CoVaR," American Economic Review, American Economic Association, vol. 106(7), pages 1705-1741, July.
      • Tobias Adrian & Markus K. Brunnermeier, 2008. "CoVaR," Staff Reports 348, Federal Reserve Bank of New York.
      • Tobias Adrian & Markus K. Brunnermeier, 2011. "CoVaR," NBER Working Papers 17454, National Bureau of Economic Research, Inc.
    11. Engle, Robert F & Manganelli, Simone, 1999. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," University of California at San Diego, Economics Working Paper Series qt06m3d6nv, Department of Economics, UC San Diego.
    12. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    13. Neil Shephard & Silja Kinnebrock & Ole E. Barndorff-Neilsen, 2008. "Measuring downside risk - realised semivariance," Economics Series Working Papers 382, University of Oxford, Department of Economics.
    14. Campbell, John Y, 1993. "Intertemporal Asset Pricing without Consumption Data," American Economic Review, American Economic Association, vol. 83(3), pages 487-512, June.
    15. Lettau, Martin & Maggiori, Matteo & Weber, Michael, 2014. "Conditional risk premia in currency markets and other asset classes," Journal of Financial Economics, Elsevier, vol. 114(2), pages 197-225.
    16. Fulvio Ortu & Andrea Tamoni & Claudio Tebaldi, 2013. "Long-Run Risk and the Persistence of Consumption Shocks," The Review of Financial Studies, Society for Financial Studies, vol. 26(11), pages 2876-2915.
    17. Berkowitz, Jeremy, 2001. "Generalized spectral estimation of the consumption-based asset pricing model," Journal of Econometrics, Elsevier, vol. 104(2), pages 269-288, September.
    18. Jozef Baruník & Tobias Kley, 2019. "Quantile coherency: A general measure for dependence between cyclical economic variables," The Econometrics Journal, Royal Economic Society, vol. 22(2), pages 131-152.
    19. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    20. John Lintner, 1965. "Security Prices, Risk, And Maximal Gains From Diversification," Journal of Finance, American Finance Association, vol. 20(4), pages 587-615, December.
    21. Bawa, Vijay S. & Lindenberg, Eric B., 1977. "Abstract: Capital Market Equilibrium in a Mean-Lower Partial Moment Framework," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 635-635, November.
    22. Gul, Faruk, 1991. "A Theory of Disappointment Aversion," Econometrica, Econometric Society, vol. 59(3), pages 667-686, May.
    23. Andrew Ang & Robert J. Hodrick & Yuhang Xing & Xiaoyan Zhang, 2006. "The Cross‐Section of Volatility and Expected Returns," Journal of Finance, American Finance Association, vol. 61(1), pages 259-299, February.
    24. repec:bla:jfinan:v:59:y:2004:i:4:p:1481-1509 is not listed on IDEAS
    25. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    26. Ole E. Barndorff-Nielsen & Silja Kinnebrock & Neil Shephard, 2008. "Measuring downside risk-realised semivariance," Economics Papers 2008-W02, Economics Group, Nuffield College, University of Oxford.
    27. Bawa, Vijay S. & Lindenberg, Eric B., 1977. "Capital market equilibrium in a mean-lower partial moment framework," Journal of Financial Economics, Elsevier, vol. 5(2), pages 189-200, November.
    28. Fama, Eugene F & MacBeth, James D, 1973. "Risk, Return, and Equilibrium: Empirical Tests," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 607-636, May-June.
    29. Marzena Rostek, 2010. "Quantile Maximization in Decision Theory ," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 77(1), pages 339-371.
    30. Black, Fischer, 1972. "Capital Market Equilibrium with Restricted Borrowing," The Journal of Business, University of Chicago Press, vol. 45(3), pages 444-455, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farago, Adam & Tédongap, Roméo, 2018. "Downside risks and the cross-section of asset returns," Journal of Financial Economics, Elsevier, vol. 129(1), pages 69-86.
    2. Harris, Richard D.F. & Nguyen, Linh H. & Stoja, Evarist, 2019. "Systematic extreme downside risk," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 61(C), pages 128-142.
    3. Roh, Tai-Yong & Lee, Changjun & Min, Byoung-Kyu, 2019. "Consumption growth predictability and asset prices," Journal of Empirical Finance, Elsevier, vol. 51(C), pages 95-118.
    4. Luciano de Castro & Antonio F. Galvao & Gabriel Montes-Rojas & Jose Olmo, 2022. "Portfolio selection in quantile decision models," Annals of Finance, Springer, vol. 18(2), pages 133-181, June.
    5. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2022. "Realized semibetas: Disentangling “good” and “bad” downside risks," Journal of Financial Economics, Elsevier, vol. 144(1), pages 227-246.
    6. Jozef Barunik & Josef Kurka, 2021. "Risks of heterogeneously persistent higher moments," Papers 2104.04264, arXiv.org, revised Mar 2024.
    7. Adam Zaremba & Jacob Koby Shemer, 2018. "Price-Based Investment Strategies," Springer Books, Springer, number 978-3-319-91530-2, December.
    8. Tamara Ajrapetova, 2018. "Cross-Section of Asset Returns: Emerging Markets and Market Integration," European Financial and Accounting Journal, Prague University of Economics and Business, vol. 2018(1), pages 41-60.
    9. Paul Schneider & Christian Wagner & Josef Zechner, 2020. "Low‐Risk Anomalies?," Journal of Finance, American Finance Association, vol. 75(5), pages 2673-2718, October.
    10. John Y. Campbell, 2000. "Asset Pricing at the Millennium," Journal of Finance, American Finance Association, vol. 55(4), pages 1515-1567, August.
    11. Neuhierl, Andreas & Varneskov, Rasmus T., 2021. "Frequency dependent risk," Journal of Financial Economics, Elsevier, vol. 140(2), pages 644-675.
    12. Petros Messis & Antonis Alexandridis & Achilleas Zapranis, 2021. "Testing and comparing conditional risk‐return relationship with a new approach in the cross‐sectional framework," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 218-240, January.
    13. Asgar Ali & K. N. Badhani, 2023. "Downside risk matters once the lottery effect is controlled: explaining risk–return relationship in the Indian equity market," Journal of Asset Management, Palgrave Macmillan, vol. 24(1), pages 27-43, February.
    14. Committee, Nobel Prize, 2013. "Understanding Asset Prices," Nobel Prize in Economics documents 2013-1, Nobel Prize Committee.
    15. Liu, Jinjing, 2023. "A novel downside beta and expected stock returns," International Review of Financial Analysis, Elsevier, vol. 85(C).
    16. Palwishah, Rana & Kashif, Muhammad & Rehman, Mobeen Ur & Al-Faryan, Mamdouh Abdulaziz Saleh, 2024. "Asymmetric liquidity risk and currency returns before and during COVID-19 pandemic," International Review of Financial Analysis, Elsevier, vol. 91(C).
    17. Malamud, Semyon & Vilkov, Grigory, 2018. "Non-myopic betas," Journal of Financial Economics, Elsevier, vol. 129(2), pages 357-381.
    18. Jozef Barunik & Martin Hronec & Ondrej Tobek, 2024. "Predicting the distributions of stock returns around the globe in the era of big data and learning," Papers 2408.07497, arXiv.org.
    19. Zhong, Angel, 2018. "Idiosyncratic volatility in the Australian equity market," Pacific-Basin Finance Journal, Elsevier, vol. 50(C), pages 105-125.
    20. Frantisek Cech & Jozef Barunik, 2017. "Measurement of Common Risk Factors: A Panel Quantile Regression Model for Returns," Working Papers IES 2017/20, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Sep 2017.

    More about this item

    Keywords

    cross-sectional return variation; downside risk; frequency; investment horizons; spectral risk; tail risk;
    All these keywords.

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:jfinec:v:21:y:2023:i:5:p:1590-1646.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/sofieea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.