[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v100y2013i4p901-920.html
   My bibliography  Save this article

Reduced rank regression via adaptive nuclear norm penalization

Author

Listed:
  • Kun Chen
  • Hongbo Dong
  • Kung-Sik Chan
Abstract
We propose an adaptive nuclear norm penalization approach for low-rank matrix approximation, and use it to develop a new reduced rank estimation method for high-dimensional multivariate regression. The adaptive nuclear norm is defined as the weighted sum of the singular values of the matrix, and it is generally nonconvex under the natural restriction that the weight decreases with the singular value. However, we show that the proposed nonconvex penalized regression method has a global optimal solution obtained from an adaptively soft-thresholded singular value decomposition. The method is computationally efficient, and the resulting solution path is continuous. The rank consistency of and prediction/estimation performance bounds for the estimator are established for a high-dimensional asymptotic regime. Simulation studies and an application in genetics demonstrate its efficacy. Copyright 2013, Oxford University Press.

Suggested Citation

  • Kun Chen & Hongbo Dong & Kung-Sik Chan, 2013. "Reduced rank regression via adaptive nuclear norm penalization," Biometrika, Biometrika Trust, vol. 100(4), pages 901-920.
  • Handle: RePEc:oup:biomet:v:100:y:2013:i:4:p:901-920
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/ast036
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Yaohong & Zhao, Weihua & Wang, Lei, 2023. "Online regularized matrix regression with streaming data," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    2. Lian, Heng & Kim, Yongdai, 2016. "Nonconvex penalized reduced rank regression and its oracle properties in high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 383-393.
    3. Goh, Gyuhyeong & Dey, Dipak K. & Chen, Kun, 2017. "Bayesian sparse reduced rank multivariate regression," Journal of Multivariate Analysis, Elsevier, vol. 157(C), pages 14-28.
    4. Chen, Canyi & Xu, Wangli & Zhu, Liping, 2022. "Distributed estimation in heterogeneous reduced rank regression: With application to order determination in sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    5. Ahelegbey, Daniel Felix, 2015. "The Econometrics of Bayesian Graphical Models: A Review With Financial Application," MPRA Paper 92634, University Library of Munich, Germany, revised 25 Apr 2016.
    6. S. Yaser Samadi & Wiranthe B. Herath, 2023. "Reduced-rank Envelope Vector Autoregressive Models," Papers 2309.12902, arXiv.org.
    7. Wei Hu & Tianyu Pan & Dehan Kong & Weining Shen, 2021. "Nonparametric matrix response regression with application to brain imaging data analysis," Biometrics, The International Biometric Society, vol. 77(4), pages 1227-1240, December.
    8. Aaron J. Molstad & Adam J. Rothman, 2016. "Indirect multivariate response linear regression," Biometrika, Biometrika Trust, vol. 103(3), pages 595-607.
    9. Zhao, Weihua & Jiang, Xuejun & Lian, Heng, 2018. "A principal varying-coefficient model for quantile regression: Joint variable selection and dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 269-280.
    10. Kohei Yoshikawa & Shuichi Kawano, 2023. "Sparse reduced-rank regression for simultaneous rank and variable selection via manifold optimization," Computational Statistics, Springer, vol. 38(1), pages 53-75, March.
    11. Mishra, Aditya & Dey, Dipak K. & Chen, Yong & Chen, Kun, 2021. "Generalized co-sparse factor regression," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    12. Yang, Yuehan & Xia, Siwei & Yang, Hu, 2023. "Multivariate sparse Laplacian shrinkage for joint estimation of two graphical structures," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    13. Kun Chen & Kung-Sik Chan & Nils Chr. Stenseth, 2014. "Source-Sink Reconstruction Through Regularized Multicomponent Regression Analysis-With Application to Assessing Whether North Sea Cod Larvae Contributed to Local Fjord Cod in Skagerrak," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 560-573, June.
    14. Fan, Jianqing & Gong, Wenyan & Zhu, Ziwei, 2019. "Generalized high-dimensional trace regression via nuclear norm regularization," Journal of Econometrics, Elsevier, vol. 212(1), pages 177-202.
    15. Jiang, Zhenzhen & Guo, Hongping & Wang, Jinjuan, 2023. "Feature screening for multiple responses," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    16. Guo, Wenxing & Balakrishnan, Narayanaswamy & He, Mu, 2023. "Envelope-based sparse reduced-rank regression for multivariate linear model," Journal of Multivariate Analysis, Elsevier, vol. 195(C).
    17. Luo, Chongliang & Liang, Jian & Li, Gen & Wang, Fei & Zhang, Changshui & Dey, Dipak K. & Chen, Kun, 2018. "Leveraging mixed and incomplete outcomes via reduced-rank modeling," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 378-394.
    18. Feng, Sanying & Lian, Heng & Zhu, Fukang, 2016. "Reduced rank regression with possibly non-smooth criterion functions: An empirical likelihood approach," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 139-150.
    19. Sangyoon Yi & Raymond Ka Wai Wong & Irina Gaynanova, 2023. "Hierarchical nuclear norm penalization for multi‐view data integration," Biometrics, The International Biometric Society, vol. 79(4), pages 2933-2946, December.
    20. Daniel Felix Ahelegbey, 2015. "The Econometrics of Networks: A Review," Working Papers 2015:13, Department of Economics, University of Venice "Ca' Foscari".

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:100:y:2013:i:4:p:901-920. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.