[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v42y2008i2p146-165.html
   My bibliography  Save this article

Allocating Costs in a Collaborative Transportation Procurement Network

Author

Listed:
  • Okan Örsan Özener

    (H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332)

  • Özlem Ergun

    (H. Milton Stewart School of Industrial and Systems Engineering and The Logistics Institute, Georgia Institute of Technology, Atlanta, Georgia 30332)

Abstract
We study a logistics network in which shippers collaborate and bundle their shipment requests to negotiate better rates with a common carrier. In this setting, shippers can identify collaborative routes with decreased overall empty truck movements. After the optimal routes that minimize total cost of covering all the shippers' demands are determined, this cost is allocated among the shippers. Our goal is to devise cost-allocation mechanisms that ensure the sustainability of the collaboration. We first develop cost-allocation mechanisms with well-known properties from the cooperative game theory literature, such as budget balance, stability, and cross-monotonicity. Next, we define a set of new properties, such as a guaranteed discount from the standalone cost for each shipper, desirable in our setting, and propose several cost-allocation schemes that could lead to implementable solutions. We also perform a computational study on randomly generated and real-life data to derive insights on the performance of the developed allocation schemes.

Suggested Citation

  • Okan Örsan Özener & Özlem Ergun, 2008. "Allocating Costs in a Collaborative Transportation Procurement Network," Transportation Science, INFORMS, vol. 42(2), pages 146-165, May.
  • Handle: RePEc:inm:ortrsc:v:42:y:2008:i:2:p:146-165
    DOI: 10.1287/trsc.1070.0219
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.1070.0219
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.1070.0219?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Granot, D. & Hamers, H.J.M. & Tijs, S.H., 1999. "On some balanced, totally balanced and submodular delivery games," Other publications TiSEM e0496604-0162-4a27-992c-a, Tilburg University, School of Economics and Management.
    2. Peter Borm & Herbert Hamers & Ruud Hendrickx, 2001. "Operations research games: A survey," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 9(2), pages 139-199, December.
    3. SCHMEIDLER, David, 1969. "The nucleolus of a characteristic function game," LIDAM Reprints CORE 44, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Dov Samet & Eitan Zemel, 1984. "On the Core and Dual Set of Linear Programming Games," Mathematics of Operations Research, INFORMS, vol. 9(2), pages 309-316, May.
    5. Ehud Kalai & Eitan Zemel, 1982. "Generalized Network Problems Yielding Totally Balanced Games," Operations Research, INFORMS, vol. 30(5), pages 998-1008, October.
    6. Ozlem Ergun & Gultekin Kuyzu & Martin Savelsbergh, 2007. "Reducing Truckload Transportation Costs Through Collaboration," Transportation Science, INFORMS, vol. 41(2), pages 206-221, May.
    7. E. William Moore & Janice M. Warmke & Lonny R. Gorban, 1991. "The Indispensable Role of Management Science in Centralizing Freight Operations at Reynolds Metals Company," Interfaces, INFORMS, vol. 21(1), pages 107-129, February.
    8. Sanchez-Soriano, Joaquin & Lopez, Marco A. & Garcia-Jurado, Ignacio, 2001. "On the core of transportation games," Mathematical Social Sciences, Elsevier, vol. 41(2), pages 215-225, March.
    9. Stefan Engevall & Maud Göthe-Lundgren & Peter Värbrand, 2004. "The Heterogeneous Vehicle-Routing Game," Transportation Science, INFORMS, vol. 38(1), pages 71-85, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Borm & Herbert Hamers & Ruud Hendrickx, 2001. "Operations research games: A survey," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 9(2), pages 139-199, December.
    2. Serap Ergün & Pınar Usta & Sırma Zeynep Alparslan Gök & Gerhard Wilhelm Weber, 2023. "A game theoretical approach to emergency logistics planning in natural disasters," Annals of Operations Research, Springer, vol. 324(1), pages 855-868, May.
    3. Bergantiños, Gustavo & Gómez-Rúa, María & Llorca, Natividad & Pulido, Manuel & Sánchez-Soriano, Joaquín, 2020. "Allocating costs in set covering problems," European Journal of Operational Research, Elsevier, vol. 284(3), pages 1074-1087.
    4. Gansterer, Margaretha & Hartl, Richard F., 2018. "Collaborative vehicle routing: A survey," European Journal of Operational Research, Elsevier, vol. 268(1), pages 1-12.
    5. Behzad Hezarkhani & Marco Slikker & Tom Woensel, 2016. "A competitive solution for cooperative truckload delivery," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(1), pages 51-80, January.
    6. A. Kimms & I. Kozeletskyi, 2016. "Shapley value-based cost allocation in the cooperative traveling salesman problem under rolling horizon planning," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 5(4), pages 371-392, December.
    7. Richa Agarwal & Özlem Ergun, 2010. "Network Design and Allocation Mechanisms for Carrier Alliances in Liner Shipping," Operations Research, INFORMS, vol. 58(6), pages 1726-1742, December.
    8. Sanchez-Soriano, Joaquin, 2006. "Pairwise solutions and the core of transportation situations," European Journal of Operational Research, Elsevier, vol. 175(1), pages 101-110, November.
    9. Arroyo, Federico, 2024. "Cost Allocation in Vehicle Routing Problems with Time Windows," Junior Management Science (JUMS), Junior Management Science e. V., vol. 9(1), pages 1241-1268.
    10. Ichiro Nishizaki & Tomohiro Hayashida & Yuki Shintomi, 2016. "A core-allocation for a network restricted linear production game," Annals of Operations Research, Springer, vol. 238(1), pages 389-410, March.
    11. Ichiro Nishizaki & Tomohiro Hayashida & Shinya Sekizaki & Kojiro Furumi, 2023. "A two-stage linear production planning model with partial cooperation under stochastic demands," Annals of Operations Research, Springer, vol. 320(1), pages 293-324, January.
    12. van Beek, Andries & Malmberg, Benjamin & Borm, Peter & Quant, Marieke & Schouten, Jop, 2021. "Cooperation and Competition in Linear Production and Sequencing Processes," Discussion Paper 2021-011, Tilburg University, Center for Economic Research.
    13. Thijssen, J.J.J., 2003. "Investment under uncertainty, market evolution and coalition spillovers in a game theoretic perspective," Other publications TiSEM 672073a6-492e-4621-8d4a-0, Tilburg University, School of Economics and Management.
    14. Grundel, S. & Borm, P.E.M. & Hamers, H.J.M., 2011. "A Compromise Stable Extension of Bankruptcy Games : Multipurpose Resource Allocation," Discussion Paper 2011-029, Tilburg University, Center for Economic Research.
    15. Gao, Evelyn & Sowlati, Taraneh & Akhtari, Shaghaygh, 2019. "Profit allocation in collaborative bioenergy and biofuel supply chains," Energy, Elsevier, vol. 188(C).
    16. Soesja Grundel & Peter Borm & Herbert Hamers, 2013. "Resource allocation games: a compromise stable extension of bankruptcy games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 78(2), pages 149-169, October.
    17. Minyoung Yea & Seokhyun Chung & Taesu Cheong & Daeki Kim, 2018. "The Sharing of Benefits from a Logistics Alliance Based on a Hub-Spoke Network: A Cooperative Game Theoretic Approach," Sustainability, MDPI, vol. 10(6), pages 1-16, June.
    18. Borrero, D.V. & Hinojosa, M.A. & Mármol, A.M., 2016. "DEA production games and Owen allocations," European Journal of Operational Research, Elsevier, vol. 252(3), pages 921-930.
    19. Michel Le Breton & Juan Moreno-Ternero & Alexei Savvateev & Shlomo Weber, 2013. "Stability and fairness in models with a multiple membership," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(3), pages 673-694, August.
    20. Ichiro Nishizaki & Tomohiro Hayashida & Shinya Sekizaki & Kenta Tanaka, 2023. "Averaged dual solution for linear production games and its characterization," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(2), pages 523-555, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:42:y:2008:i:2:p:146-165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.