[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/imx/journl/v13y2018i4p483-505.html
   My bibliography  Save this article

What makes Input-Output Tables of Trade of Raw Material Goods Peculiar Networks? The World and Mexican Cases

Author

Listed:
  • Katya Pérez-Guzmán

    (International Institute for Applied Systems Analysis, Austria)

  • Isela-Elizabeth Téllez-León

    (International Institute for Applied Systems Analysis, Austria)

  • Ali Kharrazi

    (The University of Tokyo, Japan)

  • Brian Fath

    (Towson University, USA)

  • Francisco Venegas-Martínez

    (Instituto Politécnico Nacional, Mexico)

Abstract
Objetivo: se examinan varias peculiaridades de las tablas de input-output (IOT) del comercio de materias primas cuando se tratan como redes. Metodología: dos IOTs de comercio de materias primas (mundial y México) se comparan con una red con distribución de escala y organización jerárquica (una base de datos de correos electrónicos) utilizando distintas centralidades y estadísticas de la teoría de grafos. Resultados: las IOTs son un tipo de gráfico muy particular debido a su idiosincrasia, para las cuales las medidas de estándar de gráficas no proporcionan resultados satisfactorios, y que deben adaptarse para dar un retrato fragmentado de toda la red. Recomendaciones: las herramientas analíticas de redes aplicadas a las IOTs mejoran la comprensión del comercio de materias primas, a nivel nacional como mundial, lo cual es útil en el diseño de la política comercial. Limitaciones: no se incluye la centralidad de caminata aleatoria ni cambios de régimen por shocks externos. Originalidad: es una contribución novedosa que resalta particularidades de las IOTs, vistas como redes, para México. Conclusiones: se encuentran importantes particularidades de las IOTs al compararlas con otras redes.

Suggested Citation

  • Katya Pérez-Guzmán & Isela-Elizabeth Téllez-León & Ali Kharrazi & Brian Fath & Francisco Venegas-Martínez, 2018. "What makes Input-Output Tables of Trade of Raw Material Goods Peculiar Networks? The World and Mexican Cases," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 13(4), pages 483-505, Octubre-D.
  • Handle: RePEc:imx:journl:v:13:y:2018:i:4:p:483-505
    as

    Download full text from publisher

    File URL: http://www.remef.org.mx/index.php/remef/article/view/334
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gert Sabidussi, 1966. "The centrality index of a graph," Psychometrika, Springer;The Psychometric Society, vol. 31(4), pages 581-603, December.
    2. Daron Acemoglu & Asuman Ozdaglar & Alireza Tahbaz-Salehi, 2015. "Systemic Risk and Stability in Financial Networks," American Economic Review, American Economic Association, vol. 105(2), pages 564-608, February.
    3. Daron Acemoglu & Vasco M. Carvalho & Asuman Ozdaglar & Alireza Tahbaz‐Salehi, 2012. "The Network Origins of Aggregate Fluctuations," Econometrica, Econometric Society, vol. 80(5), pages 1977-2016, September.
    4. Freixas, Xavier & Parigi, Bruno M & Rochet, Jean-Charles, 2000. "Systemic Risk, Interbank Relations, and Liquidity Provision by the Central Bank," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 32(3), pages 611-638, August.
    5. Yann Bramoull? & Rachel Kranton & Martin D'Amours, 2014. "Strategic Interaction and Networks," American Economic Review, American Economic Association, vol. 104(3), pages 898-930, March.
    6. Ana Salome Garcia Muniz & Antonio Morillas Raya & Carmen Ramos Carvajal, 2008. "Key Sectors: A New Proposal from Network Theory," Regional Studies, Taylor & Francis Journals, vol. 42(7), pages 1013-1030.
    7. , D. & Tessone, Claudio J. & ,, 2014. "Nestedness in networks: A theoretical model and some applications," Theoretical Economics, Econometric Society, vol. 9(3), September.
    8. Dirk Helbing, 2013. "Globally networked risks and how to respond," Nature, Nature, vol. 497(7447), pages 51-59, May.
    9. McNerney, James & Fath, Brian D. & Silverberg, Gerald, 2013. "Network structure of inter-industry flows," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6427-6441.
    10. Marcel P. Timmer & Erik Dietzenbacher & Bart Los & Robert Stehrer & Gaaitzen J. Vries, 2015. "An Illustrated User Guide to the World Input–Output Database: the Case of Global Automotive Production," Review of International Economics, Wiley Blackwell, vol. 23(3), pages 575-605, August.
    11. Stefan Pauliuk & Guillaume Majeau-Bettez & Daniel B. Müller, 2015. "A General System Structure and Accounting Framework for Socioeconomic Metabolism," Journal of Industrial Ecology, Yale University, vol. 19(5), pages 728-741, October.
    12. Steven H. Strogatz, 2001. "Exploring complex networks," Nature, Nature, vol. 410(6825), pages 268-276, March.
    13. Ana Salomé García Muñiz & Antonio Morillas Raya & Carmen Ramos Carvajal, 2011. "Core periphery valued models in input‐output field: A scope from network theory," Papers in Regional Science, Wiley Blackwell, vol. 90(1), pages 111-121, March.
    14. Tolga Kaya, 2017. "Unraveling the Energy use Network of Construction Sector in Turkey using Structural Path Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 7(1), pages 31-43.
    15. Christina Prell & Laixiang Sun & Kuishuang Feng & Tyler W Myroniuk, 2015. "Inequalities in Global Trade: A Cross-Country Comparison of Trade Network Position, Economic Wealth, Pollution and Mortality," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-18, December.
    16. S. L. Hakimi, 1964. "Optimum Locations of Switching Centers and the Absolute Centers and Medians of a Graph," Operations Research, INFORMS, vol. 12(3), pages 450-459, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carbajal-De-Nova, Carolina & Venegas-Martínez, Francisco, 2019. "On the paradigm shift of asset pricing models, before and after the global financial crisis: a literature review," Panorama Económico, Escuela Superior de Economía, Instituto Politécnico Nacional, vol. 15(29), pages 7-38, Primer se.
    2. Zenou, Yves, 2014. "Key Players," CEPR Discussion Papers 10277, C.E.P.R. Discussion Papers.
    3. Peydró, José-Luis & Jiménez, Gabriel & Kenan, Huremovic & Moral-Benito, Enrique & Vega-Redondo, Fernando, 2020. "Production and financial networks in interplay: Crisis evidence from supplier-customer and credit registers," CEPR Discussion Papers 15277, C.E.P.R. Discussion Papers.
    4. Maryam Farboodi, 2014. "Intermediation and Voluntary Exposure to Counterparty Risk," 2014 Meeting Papers 365, Society for Economic Dynamics.
    5. Daron Acemoglu & Asuman Ozdaglar & Alireza Tahbaz-Salehi, 2015. "Networks, Shocks, and Systemic Risk," NBER Working Papers 20931, National Bureau of Economic Research, Inc.
    6. João Amador & Sónia Cabral, 2017. "Networks of Value-added Trade," The World Economy, Wiley Blackwell, vol. 40(7), pages 1291-1313, July.
    7. Otto, Christian & Willner, Sven Norman & Wenz, Leonie & Frieler, Katja & Levermann, Anders, 2017. "Modeling loss-propagation in the global supply network: The dynamic agent-based model acclimate," OSF Preprints 7yyhd, Center for Open Science.
    8. Kukuvec, Anja & Oberhofer, Harald, 2018. "The propagation of business sentiment within the European Union," Department of Economics Working Paper Series 257, WU Vienna University of Economics and Business.
    9. Matteo Barigozzi & Christian Brownlees, 2019. "NETS: Network estimation for time series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(3), pages 347-364, April.
    10. Yajing Huang & Taoxiong Liu, 2023. "Diversification and Systemic Risk of Networks Holding Common Assets," Computational Economics, Springer;Society for Computational Economics, vol. 61(1), pages 341-388, January.
    11. Matthew O. Jackson & Brian W. Rogers & Yves Zenou, 2017. "The Economic Consequences of Social-Network Structure," Journal of Economic Literature, American Economic Association, vol. 55(1), pages 49-95, March.
    12. Billio, Monica & Casarin, Roberto & Costola, Michele & Pasqualini, Andrea, 2016. "An entropy-based early warning indicator for systemic risk," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 45(C), pages 42-59.
    13. I�aki Aldasoro & Ignazio Angeloni, 2015. "Input-output-based measures of systemic importance," Quantitative Finance, Taylor & Francis Journals, vol. 15(4), pages 589-606, April.
    14. Bhattacharya, Mita & Inekwe, John Nkwoma & Valenzuela, Maria Rebecca, 2020. "Credit risk and financial integration: An application of network analysis," International Review of Financial Analysis, Elsevier, vol. 72(C).
    15. Everett Grant & Julieta Yung, 2017. "The Double-Edged Sword of Global Integration: Robustness, Fragility & Contagion in the International Firm Network," Globalization Institute Working Papers 313, Federal Reserve Bank of Dallas.
    16. Seyit Kerimkhulle & Natalia Obrosova & Alexander Shananin & Gulmira Azieva, 2022. "The Nonlinear Model of Intersectoral Linkages of Kazakhstan for Macroeconomic Decision-Making Processes in Sustainable Supply Chain Management," Sustainability, MDPI, vol. 14(21), pages 1-21, November.
    17. Yang Sun & Wei Zhao & Junjie Zhou, 2021. "Structural Interventions in Networks," Papers 2101.12420, arXiv.org, revised Feb 2021.
    18. Li, Xueheng, 2023. "Designing weighted and directed networks under complementarities," Games and Economic Behavior, Elsevier, vol. 140(C), pages 556-574.
    19. Sun, Xiaoqi & An, Haizhong & Gao, Xiangyun & Jia, Xiaoliang & Liu, Xiaojia, 2016. "Indirect energy flow between industrial sectors in China: A complex network approach," Energy, Elsevier, vol. 94(C), pages 195-205.
    20. Huang, Yajing & Liu, Taoxiong & Lien, Donald, 2017. "Portfolio Homogenization and Systemic Risk of Financial Network," MPRA Paper 82956, University Library of Munich, Germany.

    More about this item

    Keywords

    Network analysis; network topology; graph theory; input-output tables; extractivism; raw material trade;
    All these keywords.

    JEL classification:

    • C40 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - General
    • C67 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Input-Output Models
    • F10 - International Economics - - Trade - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:imx:journl:v:13:y:2018:i:4:p:483-505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ricardo Mendoza (email available below). General contact details of provider: https://www.remef.org.mx/index.php/remef/index .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.