[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/kap/enreec/v59y2014i2p167-185.html
   My bibliography  Save this article

Maintaining the Common Pool: Voluntary Water Conservation in Response to Varying Scarcity

Author

Listed:
  • Emma Aisbett
  • Ralf Steinhauser
Abstract
Studies of voluntary conservation response to changing information about an environmental problem have traditionally been synonymous with studies of information campaign effectiveness. As such, they have not been able to capture the response to actual changes in the environment. This paper takes a novel approach to identifying voluntary conservation by studying the impact of changing storage levels on urban water usage in the context of a prolonged drought and a highly ’water aware’ community. Our results suggest that voluntary conservation increases substantially when water is scarce and the public value of the savings is greatest. We discuss the implications of these findings for our understanding of environmental information campaigns in general, and urban water demand management in particular. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Emma Aisbett & Ralf Steinhauser, 2014. "Maintaining the Common Pool: Voluntary Water Conservation in Response to Varying Scarcity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 59(2), pages 167-185, October.
  • Handle: RePEc:kap:enreec:v:59:y:2014:i:2:p:167-185
    DOI: 10.1007/s10640-013-9722-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10640-013-9722-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10640-013-9722-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. R. Quentin Grafton & Tom Kompas, 2007. "Pricing Sydney water ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 51(3), pages 227-241, September.
    2. Cutter, W. Bowman & Neidell, Matthew, 2009. "Voluntary information programs and environmental regulation: Evidence from 'Spare the Air'," Journal of Environmental Economics and Management, Elsevier, vol. 58(3), pages 253-265, November.
    3. Jasper M. Dalhuisen & Raymond J. G. M. Florax & JHenri L. F. de Groot & Peter Nijkamp, 2003. "Price and Income Elasticities of Residential Water Demand: A Meta-Analysis," Land Economics, University of Wisconsin Press, vol. 79(2), pages 292-308.
    4. Brekke, Kjell Arne & Kverndokk, Snorre & Nyborg, Karine, 2003. "An economic model of moral motivation," Journal of Public Economics, Elsevier, vol. 87(9-10), pages 1967-1983, September.
    5. James Andreoni, 1995. "Warm-Glow versus Cold-Prickle: The Effects of Positive and Negative Framing on Cooperation in Experiments," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(1), pages 1-21.
    6. Roland Benabou & Jean Tirole, 2011. "Laws and Norms," NBER Working Papers 17579, National Bureau of Economic Research, Inc.
    7. Michael L. Nieswiadomy & David J. Molina, 1991. "A Note on Price Perception in Water Demand Models," Land Economics, University of Wisconsin Press, vol. 67(3), pages 352-359.
    8. Shin, Jeong-Shik, 1985. "Perception of Price When Price Information Is Costly: Evidence from Residential Electricity Demand," The Review of Economics and Statistics, MIT Press, vol. 67(4), pages 591-598, November.
    9. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    10. Olmstead, Sheila M. & Michael Hanemann, W. & Stavins, Robert N., 2007. "Water demand under alternative price structures," Journal of Environmental Economics and Management, Elsevier, vol. 54(2), pages 181-198, September.
    11. Hoffmann, Mark & Worthington, Andrew & Higgs, Helen, 2006. "Urban water demand with fixed volumetric charging in a large municipality: the case of Brisbane, Australia," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 50(3), pages 1-13, September.
    12. Aisbett, Emma & Steinhauser, Ralf, 2011. "Does anybody give a dam? The importance of public awareness for urban water conservation during drought," Research Reports 107850, Australian National University, Environmental Economics Research Hub.
    13. Dulleck, Uwe & Kaufmann, Sylvia, 2004. "Do customer information programs reduce household electricity demand?--the Irish program," Energy Policy, Elsevier, vol. 32(8), pages 1025-1032, June.
    14. Noah J. Goldstein & Robert B. Cialdini & Vladas Griskevicius, 2008. "A Room with a Viewpoint: Using Social Norms to Motivate Environmental Conservation in Hotels," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 35(3), pages 472-482, March.
    15. Greg Halich & Kurt Stephenson, 2009. "Effectiveness of Residential Water-Use Restrictions under Varying Levels of Municipal Effort," Land Economics, University of Wisconsin Press, vol. 85(4), pages 614-626.
    16. R. Quentin Grafton & Michael B. Ward, 2008. "Prices versus Rationing: Marshallian Surplus and Mandatory Water Restrictions," The Economic Record, The Economic Society of Australia, vol. 84(s1), pages 57-65, September.
    17. Renwick, Mary E. & Green, Richard D., 2000. "Do Residential Water Demand Side Management Policies Measure Up? An Analysis of Eight California Water Agencies," Journal of Environmental Economics and Management, Elsevier, vol. 40(1), pages 37-55, July.
    18. David Hensher & Nina Shore & Kenneth Train, 2006. "Water Supply Security and Willingness to Pay to Avoid Drought Restrictions," The Economic Record, The Economic Society of Australia, vol. 82(256), pages 56-66, March.
    19. Paul J. Ferraro & Juan Jose Miranda & Michael K. Price, 2011. "The Persistence of Treatment Effects with Norm-Based Policy Instruments: Evidence from a Randomized Environmental Policy Experiment," American Economic Review, American Economic Association, vol. 101(3), pages 318-322, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eesha Sharma & Stephanie Tully & Xiang Wang, 2022. "Scarcity and Intertemporal Choice," Working Papers 22-27, Federal Reserve Bank of Philadelphia.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emma Aisbett & Ralf Steinhauser, 2011. "Maintaining the Common Pool: Voluntary Water Conservation in Response to Increasing Scarcity," Crawford School Research Papers 1111, Crawford School of Public Policy, The Australian National University.
    2. Henrique Monteiro, 2010. "Residential Water Demand in Portugal: checking for efficiency-based justifications for increasing block tariffs," Working Papers Series 1 ercwp0110, ISCTE-IUL, Business Research Unit (BRU-IUL).
    3. María Ángeles García-Valiñas & Sara Suárez-Fernández, 2022. "Are Economic Tools Useful to Manage Residential Water Demand? A Review of Old Issues and Emerging Topics," Post-Print hal-04067487, HAL.
    4. Wichman, Casey J. & Taylor, Laura O. & von Haefen, Roger H., 2016. "Conservation policies: Who responds to price and who responds to prescription?," Journal of Environmental Economics and Management, Elsevier, vol. 79(C), pages 114-134.
    5. Oliver R. Browne & Ludovica Gazze & Michael Greenstone, 2021. "Do Conservation Policies Work? Evidence from Residential Water Use," Environmental and Energy Policy and the Economy, University of Chicago Press, vol. 2(1), pages 190-225.
    6. Nataraj, Shanthi & Hanemann, W. Michael, 2011. "Does marginal price matter? A regression discontinuity approach to estimating water demand," Journal of Environmental Economics and Management, Elsevier, vol. 61(2), pages 198-212, March.
    7. Jason Delaney & Sarah Jacobson, 2016. "Payments or Persuasion: Common Pool Resource Management with Price and Non-price Measures," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 65(4), pages 747-772, December.
    8. Aisbett, Emma & Steinhauser, Ralf, 2011. "Does anybody give a dam? The importance of public awareness for urban water conservation during drought," Research Reports 107850, Australian National University, Environmental Economics Research Hub.
    9. Andrew C. Worthington & Mark Hoffman, 2008. "An Empirical Survey Of Residential Water Demand Modelling," Journal of Economic Surveys, Wiley Blackwell, vol. 22(5), pages 842-871, December.
    10. Milan Ščasný & Šarlota Smutná, 2021. "Estimation of price and income elasticity of residential water demand in the Czech Republic over three decades," Journal of Consumer Affairs, Wiley Blackwell, vol. 55(2), pages 580-608, June.
    11. Neal Hughes & Ahmed Hafi & Tim Goesch, 2009. "Urban water management: optimal price and investment policy under climate variability ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 53(2), pages 175-192, April.
    12. Céline Nauges & Dale Whittington, 2010. "Estimation of Water Demand in Developing Countries: An Overview," The World Bank Research Observer, World Bank, vol. 25(2), pages 263-294, August.
    13. Liang Lu & David Deller & Morten Hviid, 2018. "Price and Behavioural Signals to Encourage Household Water Conservation in Temperate Climates," Working Paper series, University of East Anglia, Centre for Competition Policy (CCP) 2018-01, Centre for Competition Policy, University of East Anglia, Norwich, UK..
    14. Freebairn, John W., 2012. "Risk Aversion and Urban Water Decisions," 2012 Conference (56th), February 7-10, 2012, Fremantle, Australia 124206, Australian Agricultural and Resource Economics Society.
    15. Tomas Havranek & Zuzana Irsova & Tomas Vlach, 2018. "Measuring the Income Elasticity of Water Demand: The Importance of Publication and Endogeneity Biases," Land Economics, University of Wisconsin Press, vol. 94(2), pages 259-283.
    16. Liang Lu & David Deller & Morten Hviid, 2019. "Price and Behavioural Signals to Encourage Household Water Conservation: Implications for the UK," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 475-491, January.
    17. Bethany Cooper & Michael Burton & Lin Crase, 2019. "Willingness to Pay to Avoid Water Restrictions in Australia Under a Changing Climate," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(3), pages 823-847, March.
    18. Daniel A. Brent & Lata Gangadharan & Anca Mihut & Marie Claire Villeval, 2019. "Taxation, redistribution, and observability in social dilemmas," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 21(5), pages 826-846, October.
    19. Pratt, Bryan, 2023. "A fine is more than a price: Evidence from drought restrictions," Journal of Environmental Economics and Management, Elsevier, vol. 119(C).
    20. Janine Stone & Christopher Goemans & Marco Costanigro, 2019. "Variation in Water Demand Responsiveness to Utility Policies and Weather: A Latent-Class Model," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 1-33, September.

    More about this item

    Keywords

    Voluntary conservation; Information campaigns; Warm glow; Water use; Demand management; Q25; Q21; D64;
    All these keywords.

    JEL classification:

    • Q25 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Water
    • Q21 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Demand and Supply; Prices
    • D64 - Microeconomics - - Welfare Economics - - - Altruism; Philanthropy; Intergenerational Transfers

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:enreec:v:59:y:2014:i:2:p:167-185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.