[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v60y2017icp131-142.html
   My bibliography  Save this article

Exploring the impacts of EU ETS on the pollution abatement costs of European airlines: An application of Network Environmental Production Function

Author

Listed:
  • Cui, Qiang
  • Li, Ye
  • Wei, Yi-Ming
Abstract
In this paper, we investigate the impacts of the EU ETS on airlines' pollution abatement costs based on the empirical data of 12 European airlines. We propose a new Network Environmental Production Function to discuss the change of pollution abatement costs between the situations under EU ETS and without EU ETS. We also discuss the impacts of “Take off the European referendum” on UK airlines. The main findings are: 1. Ryanair has the largest pollution abatement costs while those of Lufthansa and Norwegian are zero. 2. The “Take off the European referendum” has no direct impacts on the pollution abatement costs of UK-based carriers. 3. The EU ETS has little influence on the pollution abatement costs of most of the airlines, and a broader package of measures should be necessary.

Suggested Citation

  • Cui, Qiang & Li, Ye & Wei, Yi-Ming, 2017. "Exploring the impacts of EU ETS on the pollution abatement costs of European airlines: An application of Network Environmental Production Function," Transport Policy, Elsevier, vol. 60(C), pages 131-142.
  • Handle: RePEc:eee:trapol:v:60:y:2017:i:c:p:131-142
    DOI: 10.1016/j.tranpol.2017.09.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X16306850
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2017.09.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kenneth Rødseth & Eirik Romstad, 2014. "Environmental Regulations, Producer Responses, and Secondary Benefits: Carbon Dioxide Reductions Under the Acid Rain Program," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 59(1), pages 111-135, September.
    2. Färe, Rolf & Grosskopf, Shawna & Pasurka, Carl, 2016. "Technical change and pollution abatement costs," European Journal of Operational Research, Elsevier, vol. 248(2), pages 715-724.
    3. Tone, Kaoru & Tsutsui, Miki, 2009. "Network DEA: A slacks-based measure approach," European Journal of Operational Research, Elsevier, vol. 197(1), pages 243-252, August.
    4. Anger, Annela, 2010. "Including aviation in the European emissions trading scheme: Impacts on the industry, CO2 emissions and macroeconomic activity in the EU," Journal of Air Transport Management, Elsevier, vol. 16(2), pages 100-105.
    5. Brueckner, Jan K. & Zhang, Anming, 2010. "Airline emission charges: Effects on airfares, service quality, and aircraft design," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 960-971, September.
    6. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    7. Färe, Rolf & Grosskopf, Shawna & Lundgren, Tommy & Marklund, Per-Olov & Zhou, Wenchao, 2012. "Productivity: Should We Include Bads?," CERE Working Papers 2012:13, CERE - the Center for Environmental and Resource Economics.
    8. Sgouridis, Sgouris & Bonnefoy, Philippe A. & Hansman, R. John, 2011. "Air transportation in a carbon constrained world: Long-term dynamics of policies and strategies for mitigating the carbon footprint of commercial aviation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(10), pages 1077-1091.
    9. Jeanneaux, Philippe & Latruffe, Laure, 2016. "Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric frameworkAuthor-Name: Dakpo, K. Hervé," European Journal of Operational Research, Elsevier, vol. 250(2), pages 347-359.
    10. Winchester, Niven & McConnachie, Dominic & Wollersheim, Christoph & Waitz, Ian A., 2013. "Economic and emissions impacts of renewable fuel goals for aviation in the US," Transportation Research Part A: Policy and Practice, Elsevier, vol. 58(C), pages 116-128.
    11. Cui, Qiang & Li, Ye, 2015. "Evaluating energy efficiency for airlines: An application of VFB-DEA," Journal of Air Transport Management, Elsevier, vol. 44, pages 34-41.
    12. Hampf, Benjamin & Rødseth, Kenneth Løvold, 2015. "Carbon dioxide emission standards for U.S. power plants: An efficiency analysis perspective," Energy Economics, Elsevier, vol. 50(C), pages 140-153.
    13. Hoang, Viet-Ngu & Coelli, Tim, 2011. "Measurement of agricultural total factor productivity growth incorporating environmental factors: A nutrients balance approach," Journal of Environmental Economics and Management, Elsevier, vol. 62(3), pages 462-474.
    14. Achim I. Czerny, 2015. "The Role of Capital Costs for Airline Responses to Emission Charges," Journal of Transport Economics and Policy, University of Bath, vol. 49(3), pages 475-495, July.
    15. Malina, Robert & McConnachie, Dominic & Winchester, Niven & Wollersheim, Christoph & Paltsev, Sergey & Waitz, Ian A., 2012. "The impact of the European Union Emissions Trading Scheme on US aviation," Journal of Air Transport Management, Elsevier, vol. 19(C), pages 36-41.
    16. Bosetti, Valentina & Buchner, Barbara, 2009. "Data Envelopment Analysis of different climate policy scenarios," Ecological Economics, Elsevier, vol. 68(5), pages 1340-1354, March.
    17. Cui, Qiang & Wei, Yi-Ming & Li, Ye, 2016. "Exploring the impacts of the EU ETS emission limits on airline performance via the Dynamic Environmental DEA approach," Applied Energy, Elsevier, vol. 183(C), pages 984-994.
    18. Derigs, Ulrich & Illing, Stefan, 2013. "Does EU ETS instigate Air Cargo network reconfiguration? A model-based analysis," European Journal of Operational Research, Elsevier, vol. 225(3), pages 518-527.
    19. Anger, Annela & Köhler, Jonathan, 2010. "Including aviation emissions in the EU ETS: Much ado about nothing? A review," Transport Policy, Elsevier, vol. 17(1), pages 38-46, January.
    20. Li, Ye & Wang, Yan-zhang & Cui, Qiang, 2015. "Evaluating airline efficiency: An application of Virtual Frontier Network SBM," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 81(C), pages 1-17.
    21. Tavassoli, Mohammad & Faramarzi, Gholam Reza & Farzipoor Saen, Reza, 2014. "Efficiency and effectiveness in airline performance using a SBM-NDEA model in the presence of shared input," Journal of Air Transport Management, Elsevier, vol. 34(C), pages 146-153.
    22. Li, Ye & Cui, Qiang, 2017. "Carbon neutral growth from 2020 strategy and airline environmental inefficiency: A Network Range Adjusted Environmental Data Envelopment Analysis," Applied Energy, Elsevier, vol. 199(C), pages 13-24.
    23. Sueyoshi, Toshiyuki & Goto, Mika, 2012. "Weak and strong disposability vs. natural and managerial disposability in DEA environmental assessment: Comparison between Japanese electric power industry and manufacturing industries," Energy Economics, Elsevier, vol. 34(3), pages 686-699.
    24. Cui, Qiang & Li, Ye & Yu, Chen-lu & Wei, Yi-Ming, 2016. "Evaluating energy efficiency for airlines: An application of Virtual Frontier Dynamic Slacks Based Measure," Energy, Elsevier, vol. 113(C), pages 1231-1240.
    25. Li, Ye & Wang, Yan-zhang & Cui, Qiang, 2016. "Has airline efficiency affected by the inclusion of aviation into European Union Emission Trading Scheme? Evidences from 22 airlines during 2008–2012," Energy, Elsevier, vol. 96(C), pages 8-22.
    26. Sebastián Lozano & Ester Gutiérrez, 2014. "A slacks-based network DEA efficiency analysis of European airlines," Transportation Planning and Technology, Taylor & Francis Journals, vol. 37(7), pages 623-637, October.
    27. Amigues, Jean-Pierre & Moreaux, Michel, 2016. "Pollution Abatement v.s. Energy Efficiency Improvements," TSE Working Papers 16-626, Toulouse School of Economics (TSE).
    28. Murty, Sushama & Robert Russell, R. & Levkoff, Steven B., 2012. "On modeling pollution-generating technologies," Journal of Environmental Economics and Management, Elsevier, vol. 64(1), pages 117-135.
    29. Färe, Rolf & Grosskopf, Shawna & Pasurka, Carl A., 2007. "Environmental production functions and environmental directional distance functions," Energy, Elsevier, vol. 32(7), pages 1055-1066.
    30. Karkazis, John & Thanassoulis, Emmanuel, 1998. "Assessing the effectiveness of regional development policies in Northern Greece using data envelopment analysis," Socio-Economic Planning Sciences, Elsevier, vol. 32(2), pages 123-137, June.
    31. Chiou, Yu-Chiun & Chen, Yen-Heng, 2006. "Route-based performance evaluation of Taiwanese domestic airlines using data envelopment analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 42(2), pages 116-127, March.
    32. Vespermann, Jan & Wald, Andreas, 2011. "Much Ado about Nothing? – An analysis of economic impacts and ecologic effects of the EU-emission trading scheme in the aviation industry," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(10), pages 1066-1076.
    33. Tsai, Wen-Hsien & Lee, Kuen-Chang & Liu, Jau-Yang & Lin, Hsiu-Ling & Chou, Yu-Wei & Lin, Sin-Jin, 2012. "A mixed activity-based costing decision model for green airline fleet planning under the constraints of the European Union Emissions Trading Scheme," Energy, Elsevier, vol. 39(1), pages 218-226.
    34. Merkert, Rico & Hensher, David A., 2011. "The impact of strategic management and fleet planning on airline efficiency - A random effects Tobit model based on DEA efficiency scores," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(7), pages 686-695, August.
    35. Koopmans, Carl & Lieshout, Rogier, 2016. "Airline cost changes: To what extent are they passed through to the passenger?," Journal of Air Transport Management, Elsevier, vol. 53(C), pages 1-11.
    36. Mallikarjun, Sreekanth, 2015. "Efficiency of US airlines: A strategic operating model," Journal of Air Transport Management, Elsevier, vol. 43(C), pages 46-56.
    37. Lu, Wen-Min & Wang, Wei-Kang & Hung, Shiu-Wan & Lu, En-Tzu, 2012. "The effects of corporate governance on airline performance: Production and marketing efficiency perspectives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(2), pages 529-544.
    38. Capobianco, Heloisa Márcia Pires & Fernandes, Elton, 2004. "Capital structure in the world airline industry," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(6), pages 421-434, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sajid, M. Jawad & Cao, Qingren & Kang, Wei, 2019. "Transport sector carbon linkages of EU's top seven emitters," Transport Policy, Elsevier, vol. 80(C), pages 24-38.
    2. Cui, Qiang & Hu, Yu-xin & Yu, Li-ting, 2022. "Can the aviation industry achieve carbon emission reduction and revenue growth simultaneously under the CNG2020 strategy? An empirical study with 25 benchmarking airlines," Energy, Elsevier, vol. 245(C).
    3. Ben Lahouel, Béchir & Taleb, Lotfi & Ben Zaied, Younes & Managi, Shunsuke, 2022. "Does primary stakeholder management improve competitiveness? A dynamic network non-parametric frontier approach," Economic Modelling, Elsevier, vol. 116(C).
    4. Dong, Qichen & Chen, Fanglin & Chen, Zhongfei, 2020. "Airports and air pollutions: Empirical evidence from China," Transport Policy, Elsevier, vol. 99(C), pages 385-395.
    5. Mengyuan Sun & Yong Tian & Yao Zhang & Muhammad Nadeem & Can Xu, 2021. "Environmental Impact and External Costs Associated with Hub-and-Spoke Network in Air Transport," Sustainability, MDPI, vol. 13(2), pages 1-21, January.
    6. Losa, Eduardo Tola & Arjomandi, Amir & Hervé Dakpo, K. & Bloomfield, Jason, 2020. "Efficiency comparison of airline groups in Annex 1 and non-Annex 1 countries: A dynamic network DEA approach," Transport Policy, Elsevier, vol. 99(C), pages 163-174.
    7. Chen, Shangrong & Bravo-Melgarejo, Sai & Mongeau, Romain & Malavolti, Estelle, 2023. "Adopting and diffusing hydrogen technology in air transport: An evolutionary game theory approach," Energy Economics, Elsevier, vol. 125(C).
    8. Cui, Qiang, 2019. "The online pricing strategy of low-cost carriers when carbon tax and competition are considered," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 420-432.
    9. Pérez-Calderón, Esteban & Milanés-Montero, Patricia & Gutíerrez-Pérez, Cristina, 2021. "Climate change, where do we come from and where are we going? European aviation sector behaviour," Transport Policy, Elsevier, vol. 114(C), pages 40-48.
    10. Markham, Francis & Young, Martin & Reis, Arianne & Higham, James, 2018. "Does carbon pricing reduce air travel? Evidence from the Australian ‘Clean Energy Future’ policy, July 2012 to June 2014," Journal of Transport Geography, Elsevier, vol. 70(C), pages 206-214.
    11. Nava, Consuelo R. & Meleo, Linda & Cassetta, Ernesto & Morelli, Giovanna, 2018. "The impact of the EU-ETS on the aviation sector: Competitive effects of abatement efforts by airlines," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 20-34.
    12. Cui, Qiang & Li, Ye & Lin, Jing-ling, 2018. "Pollution abatement costs change decomposition for airlines: An analysis from a dynamic perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 96-107.
    13. Oesingmann, Katrin, 2022. "The effect of the European Emissions Trading System (EU ETS) on aviation demand: An empirical comparison with the impact of ticket taxes," Energy Policy, Elsevier, vol. 160(C).
    14. Qiu, Rui & Hou, Shuhua & Meng, Zhiyi, 2021. "Low carbon air transport development trends and policy implications based on a scientometrics-based data analysis system," Transport Policy, Elsevier, vol. 107(C), pages 1-10.
    15. Joe Zhu, 2022. "DEA under big data: data enabled analytics and network data envelopment analysis," Annals of Operations Research, Springer, vol. 309(2), pages 761-783, February.
    16. Scheelhaase, Janina D., 2019. "How to regulate aviation's full climate impact as intended by the EU council from 2020 onwards," Journal of Air Transport Management, Elsevier, vol. 75(C), pages 68-74.
    17. Cui, Qiang & Li, Xin-yi, 2021. "Investigating the Profit Pollution Abatement Costs difference before and after the “Carbon neutral growth from 2020” strategy was proposed," Research in Transportation Economics, Elsevier, vol. 90(C).
    18. Xingyun Yan & Lingyu Wang & Mingzhu Fang & Jie Hu, 2022. "How Can Industrial Parks Achieve Carbon Neutrality? Literature Review and Research Prospect Based on the CiteSpace Knowledge Map," Sustainability, MDPI, vol. 15(1), pages 1-29, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Ye & Cui, Qiang, 2017. "Carbon neutral growth from 2020 strategy and airline environmental inefficiency: A Network Range Adjusted Environmental Data Envelopment Analysis," Applied Energy, Elsevier, vol. 199(C), pages 13-24.
    2. Cui, Qiang & Li, Ye, 2017. "Airline efficiency measures under CNG2020 strategy: An application of a Dynamic By-production model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 130-143.
    3. Cui, Qiang & Wei, Yi-Ming & Li, Ye, 2016. "Exploring the impacts of the EU ETS emission limits on airline performance via the Dynamic Environmental DEA approach," Applied Energy, Elsevier, vol. 183(C), pages 984-994.
    4. Cui, Qiang, 2019. "Investigating the airlines emission reduction through carbon trading under CNG2020 strategy via a Network Weak Disposability DEA," Energy, Elsevier, vol. 180(C), pages 763-771.
    5. Li, Ye & Wang, Yan-zhang & Cui, Qiang, 2016. "Has airline efficiency affected by the inclusion of aviation into European Union Emission Trading Scheme? Evidences from 22 airlines during 2008–2012," Energy, Elsevier, vol. 96(C), pages 8-22.
    6. Li, Ye & Cui, Qiang, 2018. "Investigating the role of cooperation in the GHG abatement costs of airlines under CNG2020 strategy via a DEA cross PAC model," Energy, Elsevier, vol. 161(C), pages 725-736.
    7. Cui, Qiang & Li, Ye, 2018. "Airline dynamic efficiency measures with a Dynamic RAM with unified natural & managerial disposability," Energy Economics, Elsevier, vol. 75(C), pages 534-546.
    8. Cui, Qiang & Li, Ye, 2020. "A cross efficiency distinguishing method to explore the cooperation degree in dynamic airline environmental efficiency," Transport Policy, Elsevier, vol. 99(C), pages 31-43.
    9. Xu, Xin & Cui, Qiang, 2017. "Evaluating airline energy efficiency: An integrated approach with Network Epsilon-based Measure and Network Slacks-based Measure," Energy, Elsevier, vol. 122(C), pages 274-286.
    10. Seufert, Juergen Heinz & Arjomandi, Amir & Dakpo, K. Hervé, 2017. "Evaluating airline operational performance: A Luenberger-Hicks-Moorsteen productivity indicator," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 104(C), pages 52-68.
    11. Cui, Qiang, 2021. "A data-based comparison of the five undesirable output disposability approaches in airline environmental efficiency," Socio-Economic Planning Sciences, Elsevier, vol. 74(C).
    12. Cui, Qiang & Li, Ye, 2017. "Airline efficiency measures using a Dynamic Epsilon-Based Measure model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 121-134.
    13. Cui, Qiang & Li, Ye & Lin, Jing-ling, 2018. "Pollution abatement costs change decomposition for airlines: An analysis from a dynamic perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 96-107.
    14. Cui, Qiang & Lin, Jing-ling & Jin, Zi-yin, 2020. "Evaluating airline efficiency under “Carbon Neutral Growth from 2020” strategy through a Network Interval Slack-Based Measure," Energy, Elsevier, vol. 193(C).
    15. Arjomandi, Amir & Dakpo, K. Hervé & Seufert, Juergen Heinz, 2018. "Have Asian airlines caught up with European Airlines? A by-production efficiency analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 389-403.
    16. Cui, Qiang & Jin, Zi-yin, 2020. "Airline environmental efficiency measures considering negative data: An application of a modified network Modified Slacks-based measure model," Energy, Elsevier, vol. 207(C).
    17. Cui, Qiang & Li, Ye & Yu, Chen-lu & Wei, Yi-Ming, 2016. "Evaluating energy efficiency for airlines: An application of Virtual Frontier Dynamic Slacks Based Measure," Energy, Elsevier, vol. 113(C), pages 1231-1240.
    18. Ye Li & Qiang Cui, 2017. "Airline energy efficiency measures using the Virtual Frontier Network RAM with weak disposability," Transportation Planning and Technology, Taylor & Francis Journals, vol. 40(4), pages 479-504, May.
    19. Li, Ye & Cui, Qiang, 2018. "Airline efficiency with optimal employee allocation: An Input-shared Network Range Adjusted Measure," Journal of Air Transport Management, Elsevier, vol. 73(C), pages 150-162.
    20. Li, Ye & Wang, Yan-zhang & Cui, Qiang, 2015. "Evaluating airline efficiency: An application of Virtual Frontier Network SBM," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 81(C), pages 1-17.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:60:y:2017:i:c:p:131-142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.