[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v112y2016icp293-302.html
   My bibliography  Save this article

Research and development strategy for environmental technology in Japan: A comparative study of the private and public sectors

Author

Listed:
  • Fujii, Hidemichi
  • Managi, Shunsuke
Abstract
Environmental protection technology plays an important role in a sustainable society, simultaneously promoting economic development and pollution control. This study examines the determinants of technology inventions related to environmental protection in Japan. We use patent application data in a decomposition analysis framework. We find that environmental patent applications increase according to the prioritization of environmental patents by private companies and according to efficiency improvements in patent applications in the public sector. Additionally, patent applications related to emission trading increased rapidly among private companies, mainly due to their increased priority after 2005. The different determinants of environmental technologies between the private and public sectors are useful for formulating effective policies to promote environmental innovation.

Suggested Citation

  • Fujii, Hidemichi & Managi, Shunsuke, 2016. "Research and development strategy for environmental technology in Japan: A comparative study of the private and public sectors," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 293-302.
  • Handle: RePEc:eee:tefoso:v:112:y:2016:i:c:p:293-302
    DOI: 10.1016/j.techfore.2016.02.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162516000548
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2016.02.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. de Freitas, Luciano Charlita & Kaneko, Shinji, 2011. "Decomposition of CO2 emissions change from energy consumption in Brazil: Challenges and policy implications," Energy Policy, Elsevier, vol. 39(3), pages 1495-1504, March.
    2. Jin, Wei, 2016. "International technology diffusion, multilateral R&D coordination, and global climate mitigation," Technological Forecasting and Social Change, Elsevier, vol. 102(C), pages 357-372.
    3. Goto, Akira & Motohashi, Kazuyuki, 2007. "Construction of a Japanese Patent Database and a first look at Japanese patenting activities," Research Policy, Elsevier, vol. 36(9), pages 1431-1442, November.
    4. Popp, David, 2006. "International innovation and diffusion of air pollution control technologies: the effects of NOX and SO2 regulation in the US, Japan, and Germany," Journal of Environmental Economics and Management, Elsevier, vol. 51(1), pages 46-71, January.
    5. Motohashi, Kazuyuki & Muramatsu, Shingo, 2012. "Examining the university industry collaboration policy in Japan: Patent analysis," Technology in Society, Elsevier, vol. 34(2), pages 149-162.
    6. Hidemichi Fujii & Kazuma Edamura & Koichi Sumikura & Yoko Furusawa & Naomi Fukuzawa & Shunsuke Managi, 2015. "How enterprise strategies are related to innovation and productivity change: an empirical study of Japanese manufacturing firms," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 24(3), pages 248-262, April.
    7. Hidemichi Fujii & Shunsuke Managi, 2013. "Decomposition of Toxic Chemical Substance Management in Three U.S. Manufacturing Sectors from 1991 to 2008," Journal of Industrial Ecology, Yale University, vol. 17(3), pages 461-471, June.
    8. Jeremy Lise & Nao Sudo & Michio Suzuki & Ken Yamada & Tomoaki Yamada, 2014. "Wage, Income and Consumption Inequality in Japan, 1981-2008: from Boom to Lost Decades," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 17(4), pages 582-612, October.
    9. Hamada, Koichi & Okada, Yasushi, 2009. "Monetary and international factors behind Japan's lost decade," Journal of the Japanese and International Economies, Elsevier, vol. 23(2), pages 200-219, June.
    10. Koichi Hamada & Yasushi Okada, 2009. "Monetary and International Factors behind Japan's Lost Decade," NBER Chapters, in: Financial Globalization, 20th Anniversary Conference, NBER-TCER-CEPR, National Bureau of Economic Research, Inc.
    11. Albino, Vito & Ardito, Lorenzo & Dangelico, Rosa Maria & Messeni Petruzzelli, Antonio, 2014. "Understanding the development trends of low-carbon energy technologies: A patent analysis," Applied Energy, Elsevier, vol. 135(C), pages 836-854.
    12. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    13. Fujii, Hidemichi & Managi, Shunsuke & Kaneko, Shinji, 2019. "Decomposition analysis of air pollution abatement in China: Empirical study for ten industrial sectors from 1998 to 2009," MPRA Paper 92234, University Library of Munich, Germany.
    14. Ang, B.W & Zhang, F.Q & Choi, Ki-Hong, 1998. "Factorizing changes in energy and environmental indicators through decomposition," Energy, Elsevier, vol. 23(6), pages 489-495.
    15. Kato, Masatoshi & Odagiri, Hiroyuki, 2012. "Development of university life-science programs and university–industry joint research in Japan," Research Policy, Elsevier, vol. 41(5), pages 939-952.
    16. Fujii, Hidemichi & Shirakawa, Seiji, 2015. "Decomposition analysis of green chemical technology inventions from 1971 to 2010 in Japan," MPRA Paper 62790, University Library of Munich, Germany.
    17. Ang, B.W. & Liu, Na, 2007. "Handling zero values in the logarithmic mean Divisia index decomposition approach," Energy Policy, Elsevier, vol. 35(1), pages 238-246, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fujii, Hidemichi & Managi, Shunsuke, 2019. "Decomposition analysis of sustainable green technology inventions in China," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 10-16.
    2. Serenella Caravella & Valeria Costantini & Francesco Crespi, 2021. "Mission-Oriented Policies and Technological Sovereignty: The Case of Climate Mitigation Technologies," Energies, MDPI, vol. 14(20), pages 1-16, October.
    3. Song, Ma-Lin & Cao, Shao-Peng & Wang, Shu-Hong, 2019. "The impact of knowledge trade on sustainable development and environment-biased technical progress," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 512-523.
    4. Su, Yifan & Xu, Guanghua, 2022. "Low-carbon transformation of natural resource industry in China: Determinants and policy implications to achieve COP26 targets," Resources Policy, Elsevier, vol. 79(C).
    5. Andrew Chapman & Hidemichi Fujii & Shunsuke Managi, 2018. "Key Drivers for Cooperation toward Sustainable Development and the Management of CO 2 Emissions: Comparative Analysis of Six Northeast Asian Countries," Sustainability, MDPI, vol. 10(1), pages 1-12, January.
    6. Michiyuki Yagi & Shunsuke Managi, 2018. "Decomposition analysis of corporate carbon dioxide and greenhouse gas emissions in Japan: Integrating corporate environmental and financial performances," Business Strategy and the Environment, Wiley Blackwell, vol. 27(8), pages 1476-1492, December.
    7. Yagi, Michiyuki & Managi, Shunsuke, 2018. "Shadow price of patent stock as knowledge stock: Time and country heterogeneity," Economic Analysis and Policy, Elsevier, vol. 60(C), pages 43-61.
    8. George Halkos & Antonis Skouloudis, 2021. "Environmental technology development and diffusion: panel data evidence from 56 countries," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(1), pages 79-92, January.
    9. Fujii, Hidemichi & Managi, Shunsuke, 2018. "Trends and priority shifts in artificial intelligence technology invention: A global patent analysis," Economic Analysis and Policy, Elsevier, vol. 58(C), pages 60-69.
    10. Kristoffer Palage & Robert Lundmark & Patrik Söderholm, 2019. "The innovation effects of renewable energy policies and their interaction: the case of solar photovoltaics," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(2), pages 217-254, April.
    11. Wang, Nan & Mogi, Gento, 2017. "Deregulation, market competition, and innovation of utilities: Evidence from Japanese electric sector," Energy Policy, Elsevier, vol. 111(C), pages 403-413.
    12. Maria Urbaniec & Justyna Tomala & Sergio Martinez, 2021. "Measurements and Trends in Technological Eco-Innovation: Evidence from Environment-Related Patents," Resources, MDPI, vol. 10(7), pages 1-17, June.
    13. Kajikawa, Yuya & Mejia, Cristian & Wu, Mengjia & Zhang, Yi, 2022. "Academic landscape of Technological Forecasting and Social Change through citation network and topic analyses," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    14. Xiaochun Zhao & Laichun Long & Qun Sun & Wei Zhang, 2022. "How to Evaluate Investment Efficiency of Environmental Pollution Control: Evidence from China," IJERPH, MDPI, vol. 19(12), pages 1-18, June.
    15. Muhammad Yousaf Raza & Yingchao Chen & Songlin Tang, 2022. "Assessing the Green R&D Investment and Patent Generation in Pakistan towards CO 2 Emissions Reduction with a Novel Decomposition Framework," Sustainability, MDPI, vol. 14(11), pages 1-19, May.
    16. Samant, Shantala & Thakur-Wernz, Pooja & Hatfield, Donald E., 2020. "Does the focus of renewable energy policy impact the nature of innovation? Evidence from emerging economies," Energy Policy, Elsevier, vol. 137(C).
    17. Hidemichi Fujii & Yoshitaka Sakakura & Atsushi Hagiwara & John Bostock & Kiyoshi Soyano & Yoshiki Matsushita, 2017. "Research and Development Strategy for Fishery Technology Innovation for Sustainable Fishery Resource Management in North-East Asia," Sustainability, MDPI, vol. 10(1), pages 1-12, December.
    18. Song, Malin & Peng, Licheng & Shang, Yuping & Zhao, Xin, 2022. "Green technology progress and total factor productivity of resource-based enterprises: A perspective of technical compensation of environmental regulation," Technological Forecasting and Social Change, Elsevier, vol. 174(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fujii, Hidemichi & Shirakawa, Seiji, 2015. "Decomposition analysis of green chemical technology inventions from 1971 to 2010 in Japan," MPRA Paper 62790, University Library of Munich, Germany.
    2. Fujii, Hidemichi & Managi, Shunsuke & Kaneko, Shinji, 2019. "Decomposition analysis of air pollution abatement in China: Empirical study for ten industrial sectors from 1998 to 2009," MPRA Paper 92234, University Library of Munich, Germany.
    3. Hidemichi Fujii & Kentaro Yoshida & Ken Sugimura, 2016. "Research and Development Strategy in Biological Technologies: A Patent Data Analysis of Japanese Manufacturing Firms," Sustainability, MDPI, vol. 8(4), pages 1-15, April.
    4. Fujii, Hidemichi & Webb, Jeremy & Mundree, Sagadevan & Rowlings, David & Grace, Peter & Wilson, Clevo & Managi, Shunsuke, 2024. "Priority change and driving factors in the voluntary carbon offset market," MPRA Paper 120657, University Library of Munich, Germany.
    5. Patiño, Lourdes Isabel & Alcántara, Vicent & Padilla, Emilio, 2021. "Driving forces of CO2 emissions and energy intensity in Colombia," Energy Policy, Elsevier, vol. 151(C).
    6. Hidemichi Fujii & Shunsuke Managi, 2013. "Decomposition of Toxic Chemical Substance Management in Three U.S. Manufacturing Sectors from 1991 to 2008," Journal of Industrial Ecology, Yale University, vol. 17(3), pages 461-471, June.
    7. Cansino, José M. & Sánchez-Braza, Antonio & Rodríguez-Arévalo, María L., 2015. "Driving forces of Spain׳s CO2 emissions: A LMDI decomposition approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 749-759.
    8. Chen, Yufeng & Miao, Jiafeng, 2023. "What Determines China’s Agricultural Non-Point Source Pollution? An Improved LMDI Decomposition Analysis," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 48(2), May.
    9. Jialing Zou & Weidong Liu & Zhipeng Tang, 2017. "Analysis of Factors Contributing to Changes in Energy Consumption in Tangshan City between 2007 and 2012," Sustainability, MDPI, vol. 9(3), pages 1-14, March.
    10. Ma, Chunbo, 2014. "A multi-fuel, multi-sector and multi-region approach to index decomposition: An application to China's energy consumption 1995–2010," Energy Economics, Elsevier, vol. 42(C), pages 9-16.
    11. Xin Yang & Chunbo Ma & Anlu Zhang, 2016. "Decomposition of Net CO 2 Emission in the Wuhan Metropolitan Area of Central China," Sustainability, MDPI, vol. 8(8), pages 1-13, August.
    12. Jung, Seok & An, Kyoung-Jin & Dodbiba, Gjergj & Fujita, Toyohisa, 2012. "Regional energy-related carbon emission characteristics and potential mitigation in eco-industrial parks in South Korea: Logarithmic mean Divisia index analysis based on the Kaya identity," Energy, Elsevier, vol. 46(1), pages 231-241.
    13. Banie Naser Outchiri, 2020. "Contributing to better energy and environmental analyses: how accurate are decomposition analysis results?," Cahiers de recherche 20-11, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
    14. Wang, Qiang & Li, Rongrong, 2016. "Journey to burning half of global coal: Trajectory and drivers of China׳s coal use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 341-346.
    15. Lin, Boqiang & Ouyang, Xiaoling, 2014. "Analysis of energy-related CO2 (carbon dioxide) emissions and reduction potential in the Chinese non-metallic mineral products industry," Energy, Elsevier, vol. 68(C), pages 688-697.
    16. Jorge Cunha & Manuel Lopes Nunes & Fátima Lima, 2018. "Discerning the factors explaining the change in energy efficiency," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 163-179, December.
    17. Andrew Chapman & Hidemichi Fujii & Shunsuke Managi, 2018. "Key Drivers for Cooperation toward Sustainable Development and the Management of CO 2 Emissions: Comparative Analysis of Six Northeast Asian Countries," Sustainability, MDPI, vol. 10(1), pages 1-12, January.
    18. Yanan Chen & Sheng Lin, 2015. "Study on factors affecting energy-related per capita carbon dioxide emission by multi-sectoral of cities: a case study of Tianjin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 833-846, June.
    19. Zha, Donglan & Yang, Guanglei & Wang, Qunwei, 2019. "Investigating the driving factors of regional CO2 emissions in China using the IDA-PDA-MMI method," Energy Economics, Elsevier, vol. 84(C).
    20. Wang, Miao & Feng, Chao, 2018. "Decomposing the change in energy consumption in China's nonferrous metal industry: An empirical analysis based on the LMDI method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2652-2663.

    More about this item

    Keywords

    Green invention; Decomposition analysis; Research and development strategy; Patent data; Log mean Divisia index;
    All these keywords.

    JEL classification:

    • O32 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Management of Technological Innovation and R&D
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:112:y:2016:i:c:p:293-302. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.