[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v102y2016icp250-260.html
   My bibliography  Save this article

The political economy of carbon capture and storage: An analysis of two demonstration projects

Author

Listed:
  • Kern, Florian
  • Gaede, James
  • Meadowcroft, James
  • Watson, Jim
Abstract
Carbon Capture and Storage (CCS) technology is considered key to mitigating climate change by international institutions and governments around the world. The technology is considered advantageous because it may enable the continued utilization of fossil fuels while curbing carbon emissions. However, development of the technology remains slow on the ground. It is generally argued that large-scale, integrated demonstration projects are needed as a next step toward commercialization. Despite government support in several countries, few projects exist so far worldwide. This paper asks why it is so difficult to get demonstration projects off the ground. The argument is that it is not only project-specific factors that determine the feasibility of demonstration, but given the need for government support, a variety of political economy factors influence decision-making processes by policy makers and companies. The paper introduces an analytical framework developed on the basis of the political economy literature that considers six sets of factors that influence outcomes. It discusses two specific projects, Longannet in the UK and Quest in Canada, and explains why one failed and the other one is under construction. The analysis shows that although climate change has been a more important policy concern in the UK compared to Canada, the specific political economy situation of fossil fuel rich provinces like Alberta has led to the Quest project going forward.

Suggested Citation

  • Kern, Florian & Gaede, James & Meadowcroft, James & Watson, Jim, 2016. "The political economy of carbon capture and storage: An analysis of two demonstration projects," Technological Forecasting and Social Change, Elsevier, vol. 102(C), pages 250-260.
  • Handle: RePEc:eee:tefoso:v:102:y:2016:i:c:p:250-260
    DOI: 10.1016/j.techfore.2015.09.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162515002723
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2015.09.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dani Rodrik, 2014. "Green industrial policy," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 30(3), pages 469-491.
    2. Iyer, Gokul & Hultman, Nathan & Eom, Jiyong & McJeon, Haewon & Patel, Pralit & Clarke, Leon, 2015. "Diffusion of low-carbon technologies and the feasibility of long-term climate targets," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 103-118.
    3. Rodrik, Dani, 2004. "Industrial Policy for the Twenty-First Century," CEPR Discussion Papers 4767, C.E.P.R. Discussion Papers.
    4. de Coninck, Heleen & Stephens, Jennie C. & Metz, Bert, 2009. "Global learning on carbon capture and storage: A call for strong international cooperation on CCS demonstration," Energy Policy, Elsevier, vol. 37(6), pages 2161-2165, June.
    5. Szolgayova, Jana & Fuss, Sabine & Obersteiner, Michael, 2008. "Assessing the effects of CO2 price caps on electricity investments--A real options analysis," Energy Policy, Elsevier, vol. 36(10), pages 3974-3981, October.
    6. Geels, Frank W., 2002. "Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study," Research Policy, Elsevier, vol. 31(8-9), pages 1257-1274, December.
    7. Kern, Florian & Smith, Adrian & Shaw, Chris & Raven, Rob & Verhees, Bram, 2014. "From laggard to leader: Explaining offshore wind developments in the UK," Energy Policy, Elsevier, vol. 69(C), pages 635-646.
    8. Rubin, Edward S. & Chen, Chao & Rao, Anand B., 2007. "Cost and performance of fossil fuel power plants with CO2 capture and storage," Energy Policy, Elsevier, vol. 35(9), pages 4444-4454, September.
    9. van Alphen, Klaas & van Voorst tot Voorst, Quirine & Hekkert, Marko P. & Smits, Ruud E.H.M., 2007. "Societal acceptance of carbon capture and storage technologies," Energy Policy, Elsevier, vol. 35(8), pages 4368-4380, August.
    10. Watson, Jim & Kern, Florian & Markusson, Nils, 2014. "Resolving or managing uncertainties for carbon capture and storage: Lessons from historical analogues," Technological Forecasting and Social Change, Elsevier, vol. 81(C), pages 192-204.
    11. Otto, Vincent M. & Reilly, John, 2008. "Directed technical change and the adoption of CO2 abatement technology: The case of CO2 capture and storage," Energy Economics, Elsevier, vol. 30(6), pages 2879-2898, November.
    12. Bob van der Zwaan & Reyer Gerlagh, 2008. "The Economics of Geological CO2 Storage and Leakage," Working Papers 2008.10, Fondazione Eni Enrico Mattei.
    13. Turnheim, Bruno & Geels, Frank W., 2012. "Regime destabilisation as the flipside of energy transitions: Lessons from the history of the British coal industry (1913–1997)," Energy Policy, Elsevier, vol. 50(C), pages 35-49.
    14. Eom, Jiyong & Edmonds, Jae & Krey, Volker & Johnson, Nils & Longden, Thomas & Luderer, Gunnar & Riahi, Keywan & Van Vuuren, Detlef P., 2015. "The impact of near-term climate policy choices on technology and emission transition pathways," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 73-88.
    15. Geels, Frank W., 2004. "From sectoral systems of innovation to socio-technical systems: Insights about dynamics and change from sociology and institutional theory," Research Policy, Elsevier, vol. 33(6-7), pages 897-920, September.
    16. Bistline, John E. & Rai, Varun, 2010. "The role of carbon capture technologies in greenhouse gas emissions-reduction models: A parametric study for the U.S. power sector," Energy Policy, Elsevier, vol. 38(2), pages 1177-1191, February.
    17. Markusson, Nils & Kern, Florian & Watson, Jim & Arapostathis, Stathis & Chalmers, Hannah & Ghaleigh, Navraj & Heptonstall, Philip & Pearson, Peter & Rossati, David & Russell, Stewart, 2012. "A socio-technical framework for assessing the viability of carbon capture and storage technology," Technological Forecasting and Social Change, Elsevier, vol. 79(5), pages 903-918.
    18. Abadie, Luis M. & Chamorro, José M., 2008. "European CO2 prices and carbon capture investments," Energy Economics, Elsevier, vol. 30(6), pages 2992-3015, November.
    19. Ha-Joon Chang, 2002. "Breaking the mould: an institutionalist political economy alternative to the neo-liberal theory of the market and the state," Cambridge Journal of Economics, Cambridge Political Economy Society, vol. 26(5), pages 539-559, September.
    20. Florian Kern & Adrian Smith & Chris Shaw & Rob Raven & Bram Verhees, 2014. "From laggard to leader: Explaining offshore wind developments in the UK," SPRU Working Paper Series 2014-02, SPRU - Science Policy Research Unit, University of Sussex Business School.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sandrine Mathy & Patrick Criqui & Katharina Knoop & Manfred Fischedick & Sascha Samadi, 2016. "Uncertainty management and the dynamic adjustment of deep decarbonization pathways," Climate Policy, Taylor & Francis Journals, vol. 16(sup1), pages 47-62, June.
    2. Hong-Hua Qiu & Lu-Ge Liu, 2018. "A Study on the Evolution of Carbon Capture and Storage Technology Based on Knowledge Mapping," Energies, MDPI, vol. 11(5), pages 1-25, May.
    3. Jingjing Xie & Yujiao Xian & Guowei Jia, 2023. "An investigation into the public acceptance in China of carbon capture and storage (CCS) technology," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(5), pages 1-22, June.
    4. Bossink, Bart A.G., 2017. "Demonstrating sustainable energy: A review based model of sustainable energy demonstration projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1349-1362.
    5. Ko, Yu-Chia & Zigan, Krystin & Liu, Yu-Lun, 2021. "Carbon capture and storage in South Africa: A technological innovation system with a political economy focus," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    6. Juan David González-Ruiz & Sergio Botero-Botero & Eduardo Duque-Grisales, 2018. "Financial Eco-Innovation as a Mechanism for Fostering the Development of Sustainable Infrastructure Systems," Sustainability, MDPI, vol. 10(12), pages 1-19, November.
    7. Ewa Knapik & Katarzyna Chruszcz-Lipska, 2020. "Chemistry of Reservoir Fluids in the Aspect of CO 2 Injection for Selected Oil Reservoirs in Poland," Energies, MDPI, vol. 13(23), pages 1-19, December.
    8. Nelson, Sarah & Allwood, Julian M., 2021. "The technological and social timelines of climate mitigation: Lessons from 12 past transitions," Energy Policy, Elsevier, vol. 152(C).
    9. Lu, Zhou & Mahalik, Mantu Kumar & Mahalik, Hrushikesh & Zhao, Rui, 2022. "The moderating effects of democracy and technology adoption on the relationship between trade liberalisation and carbon emissions," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    10. Shin, Jungwoo & Lee, Chul-Yong & Kim, Hongbum, 2016. "Technology and demand forecasting for carbon capture and storage technology in South Korea," Energy Policy, Elsevier, vol. 98(C), pages 1-11.
    11. Sandrine Mathy & P. Menanteau, 2020. "Mitigation strategies to enhance the ambition of the nationally determined contributions : an analysis of 4 European countries with the decarbonization wedges methodology," Post-Print hal-03190845, HAL.
    12. Hetti, Ravihari Kotagoda & Karunathilake, Hirushie & Chhipi-Shrestha, Gyan & Sadiq, Rehan & Hewage, Kasun, 2020. "Prospects of integrating carbon capturing into community scale energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kivimaa, Paula & Kern, Florian, 2016. "Creative destruction or mere niche support? Innovation policy mixes for sustainability transitions," Research Policy, Elsevier, vol. 45(1), pages 205-217.
    2. Zhao, Zhen-Yu & Chang, Rui-Dong & Chen, Yu-Long, 2016. "What hinder the further development of wind power in China?—A socio-technical barrier study," Energy Policy, Elsevier, vol. 88(C), pages 465-476.
    3. McMeekin, Andrew & Geels, Frank W. & Hodson, Mike, 2019. "Mapping the winds of whole system reconfiguration: Analysing low-carbon transformations across production, distribution and consumption in the UK electricity system (1990–2016)," Research Policy, Elsevier, vol. 48(5), pages 1216-1231.
    4. Matthew Lockwood & Caroline Kuzemko & Catherine Mitchell & Richard Hoggett, 2017. "Historical institutionalism and the politics of sustainable energy transitions: A research agenda," Environment and Planning C, , vol. 35(2), pages 312-333, March.
    5. Bhumika Gupta & Salil K. Sen, 2019. "Carbon Capture Usage and Storage with Scale-up: Energy Finance through Bricolage Deploying the Co-integration Methodology," International Journal of Energy Economics and Policy, Econjournals, vol. 9(6), pages 146-153.
    6. Geels, Frank W. & Kern, Florian & Fuchs, Gerhard & Hinderer, Nele & Kungl, Gregor & Mylan, Josephine & Neukirch, Mario & Wassermann, Sandra, 2016. "The enactment of socio-technical transition pathways: A reformulated typology and a comparative multi-level analysis of the German and UK low-carbon electricity transitions (1990–2014)," Research Policy, Elsevier, vol. 45(4), pages 896-913.
    7. Audrey Laude & Christian Jonen, 2011. "Biomass and CCS: The influence of the learning effect," Working Papers halshs-00829779, HAL.
    8. Mäkitie, Tuukka & Normann, Håkon E. & Thune, Taran M. & Sraml Gonzalez, Jakoba, 2019. "The green flings: Norwegian oil and gas industry’s engagement in offshore wind power," Energy Policy, Elsevier, vol. 127(C), pages 269-279.
    9. Geels, Frank W. & Ayoub, Martina, 2023. "A socio-technical transition perspective on positive tipping points in climate change mitigation: Analysing seven interacting feedback loops in offshore wind and electric vehicles acceleration," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    10. Hassan Qudrat-Ullah & Mark McCarthy Akrofi & Aymen Kayal, 2020. "Analyzing Actors’ Engagement in Sustainable Energy Planning at the Local Level in Ghana: An Empirical Study," Energies, MDPI, vol. 13(8), pages 1-20, April.
    11. Laude, Audrey & Jonen, Christian, 2013. "Biomass and CCS: The influence of technical change," Energy Policy, Elsevier, vol. 60(C), pages 916-924.
    12. Stuti Haldar, 2022. "A landscape level analysis of entrepreneurship and sustainable energy transitions: Evidences from Gujarat, India," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(4), pages 489-502, August.
    13. Attila Havas & Doris Schartinger & K. Matthias Weber, 2022. "Innovation Studies, Social Innovation, and Sustainability Transitions Research: From mutual ignorance towards an integrative perspective?," CERS-IE WORKING PAPERS 2227, Institute of Economics, Centre for Economic and Regional Studies.
    14. Bhumika Gupta & Salil K. Sen, 2019. "Carbon capture usage and storage with scale-up : energy finance through bricolage deploying the co-integration methodology," Post-Print hal-02559884, HAL.
    15. Ćetković, Stefan & Buzogány, Aron, 2020. "Between markets, politics and path-dependence: Explaining the growth of solar and wind power in six Central and Eastern European countries," Energy Policy, Elsevier, vol. 139(C).
    16. John Aldersey-Williams & Peter A. Strachan & Ian D. Broadbent, 2020. "Validating the “Seven Functions” Model of Technological Innovations Systems Theory with Industry Stakeholders—A Review from UK Offshore Renewables," Energies, MDPI, vol. 13(24), pages 1-21, December.
    17. Hurlbert, Margot & Osazuwa-Peters, Mac, 2023. "Carbon capture and storage in Saskatchewan: An analysis of communicative practices in a contested technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    18. Themann, Dörte & Brunnengräber, Achim, 2021. "Using socio-technical analogues as an additional experience horizon for nuclear waste management A comparison of wind farms, fracking, carbon capture and storage (CCS) with a deep-geological nuclear w," Utilities Policy, Elsevier, vol. 70(C).
    19. Geels, F.W. & McMeekin, A. & Pfluger, B., 2020. "Socio-technical scenarios as a methodological tool to explore social and political feasibility in low-carbon transitions: Bridging computer models and the multi-level perspective in UK electricity gen," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    20. Jasminka Young & Aleksandar Macura, 2023. "Forging Local Energy Transition in the Most Carbon-Intensive European Region of the Western Balkans," Energies, MDPI, vol. 16(4), pages 1-29, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:102:y:2016:i:c:p:250-260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.