[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v79y2009i17p1809-1817.html
   My bibliography  Save this article

Asymptotic expansion for ISE of kernel density estimators under censored dependent model

Author

Listed:
  • Fakoor, Vahid
  • Jomhoori, Sarah
  • Azarnoosh, Hasanali
Abstract
In some long term studies, we encounter a series of dependent and censored observations. Randomly censored data consist of i.i.d. pairs of observations (Xi,[delta]i)i=1,...,n. If [delta]i=0, Xi denotes a censored observation, and if [delta]i=1, Xi denotes a survival time, which is the variable of interest. One of the global stochastic measures of the distance between a density and its kernel density estimator is integrated square error. In this paper, we apply the technique of strong approximation to establish an asymptotic expansion for the integrated square error of the kernel density estimate, when censored data are showing some kind of dependence.

Suggested Citation

  • Fakoor, Vahid & Jomhoori, Sarah & Azarnoosh, Hasanali, 2009. "Asymptotic expansion for ISE of kernel density estimators under censored dependent model," Statistics & Probability Letters, Elsevier, vol. 79(17), pages 1809-1817, September.
  • Handle: RePEc:eee:stapro:v:79:y:2009:i:17:p:1809-1817
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(09)00184-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hall, Peter, 1982. "Limit theorems for stochastic measures of the accuracy of density estimators," Stochastic Processes and their Applications, Elsevier, vol. 13(1), pages 11-25, July.
    2. Masry, Elias & Tjøstheim, Dag, 1997. "Additive Nonlinear ARX Time Series and Projection Estimates," Econometric Theory, Cambridge University Press, vol. 13(2), pages 214-252, April.
    3. R.D. Gill, 1980. "Censoring and Stochastic Integrals," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 34(2), pages 124-124, June.
    4. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    5. Masry, Elias & Tjøstheim, Dag, 1995. "Nonparametric Estimation and Identification of Nonlinear ARCH Time Series Strong Convergence and Asymptotic Normality: Strong Convergence and Asymptotic Normality," Econometric Theory, Cambridge University Press, vol. 11(2), pages 258-289, February.
    6. Hall, Peter, 1984. "Central limit theorem for integrated square error of multivariate nonparametric density estimators," Journal of Multivariate Analysis, Elsevier, vol. 14(1), pages 1-16, February.
    7. Zhang, Biao, 1998. "A note on the integrated square errors of kernel density estimators under random censorship," Stochastic Processes and their Applications, Elsevier, vol. 75(2), pages 225-234, July.
    8. Cai, Zongwu, 1998. "Asymptotic properties of Kaplan-Meier estimator for censored dependent data," Statistics & Probability Letters, Elsevier, vol. 37(4), pages 381-389, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Linton, Oliver & Mammen, Enno, 2003. "Estimating semiparametric ARCH (8) models by kernel smoothing methods," LSE Research Online Documents on Economics 2187, London School of Economics and Political Science, LSE Library.
    2. Kim, Woocheol & Linton, Oliver, 2003. "A local instrumental variable estimation method for generalized additive volatility models," LSE Research Online Documents on Economics 2028, London School of Economics and Political Science, LSE Library.
    3. Gao, Jiti & Tong, Howell & Wolff, Rodney, 2002. "Model Specification Tests in Nonparametric Stochastic Regression Models," Journal of Multivariate Analysis, Elsevier, vol. 83(2), pages 324-359, November.
    4. O. Linton & E. Mammen, 2005. "Estimating Semiparametric ARCH(∞) Models by Kernel Smoothing Methods," Econometrica, Econometric Society, vol. 73(3), pages 771-836, May.
    5. Cai, Zongwu, 2001. "Estimating a Distribution Function for Censored Time Series Data," Journal of Multivariate Analysis, Elsevier, vol. 78(2), pages 299-318, August.
    6. Ajami, M. & Fakoor, V. & Jomhoori, S., 2011. "The Bahadur representation for kernel-type estimator of the quantile function under strong mixing and censored data," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1306-1310, August.
    7. Cai, Zongwu & Fan, Jianqing, 2000. "Average Regression Surface for Dependent Data," Journal of Multivariate Analysis, Elsevier, vol. 75(1), pages 112-142, October.
    8. Ghalibaf, M. Bolbolian & Fakoor, V. & Azarnoosh, H.A., 2010. "Strong Gaussian approximations of product-limit and quantile processes for truncated data under strong mixing," Statistics & Probability Letters, Elsevier, vol. 80(7-8), pages 581-586, April.
    9. Cai, Zongwu, 2003. "Nonparametric estimation equations for time series data," Statistics & Probability Letters, Elsevier, vol. 62(4), pages 379-390, May.
    10. Fakoor, V., 2010. "Strong uniform consistency of kernel density estimators under a censored dependent model," Statistics & Probability Letters, Elsevier, vol. 80(5-6), pages 318-323, March.
    11. Fuchun Li & Greg Tkacz, 2001. "A Consistent Bootstrap Test for Conditional Density Functions with Time-Dependent Data," Staff Working Papers 01-21, Bank of Canada.
    12. Sperlich, Stefan & Tjøstheim, Dag & Yang, Lijian, 2002. "Nonparametric Estimation And Testing Of Interaction In Additive Models," Econometric Theory, Cambridge University Press, vol. 18(2), pages 197-251, April.
    13. Cai, Zongwu & Xu, Xiaoping, 2009. "Nonparametric Quantile Estimations for Dynamic Smooth Coefficient Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 371-383.
    14. Hu, Shuowen & Poskitt, D.S. & Zhang, Xibin, 2021. "Bayesian estimation for a semiparametric nonlinear volatility model," Economic Modelling, Elsevier, vol. 98(C), pages 361-370.
    15. Meitz, Mika & Saikkonen, Pentti, 2008. "Ergodicity, Mixing, And Existence Of Moments Of A Class Of Markov Models With Applications To Garch And Acd Models," Econometric Theory, Cambridge University Press, vol. 24(5), pages 1291-1320, October.
    16. da Silva, Murilo & Sriram, T.N. & Ke, Yuan, 2023. "Dimension reduction in time series under the presence of conditional heteroscedasticity," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    17. Mohamed Chikhi & Claude Diebolt, 2010. "Nonparametric analysis of financial time series by the Kernel methodology," Quality & Quantity: International Journal of Methodology, Springer, vol. 44(5), pages 865-880, August.
    18. Jean-David Fermanian, 2003. "Goodness of Fit Tests for Copulas," Working Papers 2003-34, Center for Research in Economics and Statistics.
    19. Dong, Chaohua & Gao, Jiti & Tong, Howell, 2006. "Semiparametric penalty function method in partially linear model selection," MPRA Paper 11975, University Library of Munich, Germany, revised Aug 2006.
    20. Jürgen Franke & Peter Mwita & Weining Wang, 2015. "Nonparametric estimates for conditional quantiles of time series," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(1), pages 107-130, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:79:y:2009:i:17:p:1809-1817. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.