[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/resene/v34y2012i3p271-294.html
   My bibliography  Save this article

Exhaustible resources, technology choice and industrialization of developing countries

Author

Listed:
  • Färnstrand Damsgaard, Erika
Abstract
How should the world economy adapt to the increased demand for exhaustible resources from countries like China and India? To address that issue, this paper presents a dynamic model of the world economy with two technologies for production; a resource technology, which uses an exhaustible resource as an input and an alternative technology, which does not. I find that both the time path of resource extraction and the adoption of the alternative technology depend on the optimal allocation of capital across the technologies, and on the size of the capital stock in relation to the resource stock. In particular, if the capital stock is low, only the resource technology is used initially and the alternative technology is adopted with a delay. Next, I use the model to analyze the effects of industrialization of developing countries on the extraction of oil and technology choice for energy production. As a result of industrialization, the alternative technology for energy production is adopted earlier.

Suggested Citation

  • Färnstrand Damsgaard, Erika, 2012. "Exhaustible resources, technology choice and industrialization of developing countries," Resource and Energy Economics, Elsevier, vol. 34(3), pages 271-294.
  • Handle: RePEc:eee:resene:v:34:y:2012:i:3:p:271-294
    DOI: 10.1016/j.reseneeco.2011.12.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0928765511000807
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.reseneeco.2011.12.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grimaud, Andre & Rouge, Luc, 2003. "Non-renewable resources and growth with vertical innovations: optimum, equilibrium and economic policies," Journal of Environmental Economics and Management, Elsevier, vol. 45(2, Supple), pages 433-453, March.
    2. Just, Richard E. & Netanyahu, Sinaia & Olson, Lars J., 2005. "Depletion of natural resources, technological uncertainty, and the adoption of technological substitutes," Resource and Energy Economics, Elsevier, vol. 27(2), pages 91-108, June.
    3. Reyer Gerlagh, 2011. "Too Much Oil," CESifo Economic Studies, CESifo Group, vol. 57(1), pages 79-102, March.
    4. Goeschl, Timo & Perino, Grischa, 2007. "Innovation without magic bullets: Stock pollution and R&D sequences," Journal of Environmental Economics and Management, Elsevier, vol. 54(2), pages 146-161, September.
    5. Morton I. Kamien & Nancy L. Schwartz, 1978. "Optimal Exhaustible Resource Depletion with Endogenous Technical Change," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 45(1), pages 179-196.
    6. Bretschger, Lucas, 1998. "How to substitute in order to sustain: knowledge driven growth under environmental restrictions," Environment and Development Economics, Cambridge University Press, vol. 3(4), pages 425-442, October.
    7. Tsur, Yacov & Zemel, Amos, 2005. "Scarcity, growth and R&D," Journal of Environmental Economics and Management, Elsevier, vol. 49(3), pages 484-499, May.
    8. William D. Nordhaus, 1973. "The Allocation of Energy Resources," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 4(3), pages 529-576.
    9. André Grimaud & Luc Rouge, 2008. "Environment, Directed Technical Change and Economic Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 41(4), pages 439-463, December.
    10. Nordhaus, William D & Yang, Zili, 1996. "A Regional Dynamic General-Equilibrium Model of Alternative Climate-Change Strategies," American Economic Review, American Economic Association, vol. 86(4), pages 741-765, September.
    11. Pesaran, M Hashem, 1990. "An Econometric Analysis of Exploration and Extraction of Oil in the U.K. Continental Shelf," Economic Journal, Royal Economic Society, vol. 100(401), pages 367-390, June.
    12. Denise Young, 1992. "Cost Specification and Firm Behaviour in a Hotelling Model of Resource Extraction," Canadian Journal of Economics, Canadian Economics Association, vol. 25(1), pages 41-59, February.
    13. Smulders, Sjak & de Nooij, Michiel, 2003. "The impact of energy conservation on technology and economic growth," Resource and Energy Economics, Elsevier, vol. 25(1), pages 59-79, February.
    14. Dasgupta, Partha & Stiglitz, Joseph, 1981. "Resource Depletion under Technological Uncertainty," Econometrica, Econometric Society, vol. 49(1), pages 85-104, January.
    15. Chakravorty, Ujjayant & Roumasset, James & Tse, Kinping, 1997. "Endogenous Substitution among Energy Resources and Global Warming," Journal of Political Economy, University of Chicago Press, vol. 105(6), pages 1201-1234, December.
    16. Maria Cunha-e-Sá & Ana Reis, 2007. "The Optimal Timing of Adoption of a Green Technology," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 36(1), pages 35-55, January.
    17. Lans Bovenberg, A. & Smulders, Sjak, 1995. "Environmental quality and pollution-augmenting technological change in a two-sector endogenous growth model," Journal of Public Economics, Elsevier, vol. 57(3), pages 369-391, July.
    18. Tsur, Yacov & Zemel, Amos, 2003. "Optimal transition to backstop substitutes for nonrenewable resources," Journal of Economic Dynamics and Control, Elsevier, vol. 27(4), pages 551-572, February.
    19. William D. Nordhaus, 1992. "Lethal Model 2: The Limits to Growth Revisited," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 23(2), pages 1-60.
    20. Bretschger, Lucas & Smulders, Sjak, 2012. "Sustainability and substitution of exhaustible natural resources," Journal of Economic Dynamics and Control, Elsevier, vol. 36(4), pages 536-549.
    21. Gerlagh, Reyer, 2010. "Too Much Oil," Sustainable Development Papers 59419, Fondazione Eni Enrico Mattei (FEEM).
    22. Groth, Christian & Schou, Poul, 2007. "Growth and non-renewable resources: The different roles of capital and resource taxes," Journal of Environmental Economics and Management, Elsevier, vol. 53(1), pages 80-98, January.
    23. Partha Dasgupta & Geoffrey Heal, 1974. "The Optimal Depletion of Exhaustible Resources," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(5), pages 3-28.
    24. Tahvonen, Olli & Salo, Seppo, 2001. "Economic growth and transitions between renewable and nonrenewable energy resources," European Economic Review, Elsevier, vol. 45(8), pages 1379-1398, August.
    25. Robert Halvorsen & Tim R. Smith, 1991. "A Test of the Theory of Exhaustible Resources," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 106(1), pages 123-140.
    26. Jeffrey A. Krautkraemer, 1998. "Nonrenewable Resource Scarcity," Journal of Economic Literature, American Economic Association, vol. 36(4), pages 2065-2107, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    RePEc Biblio mentions

    As found on the RePEc Biblio, the curated bibliography for Economics:
    1. > Economic Development Technological Change, and Growth > Technological Change: Choices and Consequences

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gutierrez, Juan P. & Vianna, Andre C., 2020. "Price effects of steel commodities on worldwide stock market returns," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hart, Rob & Spiro, Daniel, 2011. "The elephant in Hotelling's room," Energy Policy, Elsevier, vol. 39(12), pages 7834-7838.
    2. Jouvet, Pierre-André & Schumacher, Ingmar, 2012. "Learning-by-doing and the costs of a backstop for energy transition and sustainability," Ecological Economics, Elsevier, vol. 73(C), pages 122-132.
    3. Wei Jin & ZhongXiang Zhang, 2018. "Capital Accumulation, Green Paradox, and Stranded Assets: An Endogenous Growth Perspective," Working Papers 2018.33, Fondazione Eni Enrico Mattei.
    4. van der Meijden, Gerard & Smulders, Sjak, 2018. "Technological Change During The Energy Transition," Macroeconomic Dynamics, Cambridge University Press, vol. 22(4), pages 805-836, June.
    5. Lucas Bretschger, 2016. "Is the Environment Compatible with Growth? Adopting an Integrated Framework," CER-ETH Economics working paper series 16/260, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    6. Lucas Bretschger, 2013. "Population Growth and Natural-Resource Scarcity: Long-Run Development under Seemingly Unfavorable Conditions," Scandinavian Journal of Economics, Wiley Blackwell, vol. 115(3), pages 722-755, July.
    7. Ryo Horii & Masako Ikefuji, 2014. "Environment and Growth," DSSR Discussion Papers 21, Graduate School of Economics and Management, Tohoku University.
    8. Kollenbach, Gilbert, 2017. "Unilateral climate Policy and the Green Paradox: Extraction Costs matter," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168245, Verein für Socialpolitik / German Economic Association.
    9. André, Francisco J. & Smulders, Sjak, 2014. "Fueling growth when oil peaks: Directed technological change and the limits to efficiency," European Economic Review, Elsevier, vol. 69(C), pages 18-39.
    10. Prudence Dato, 2017. "Energy Transition Under Irreversibility: A Two-Sector Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(3), pages 797-820, November.
    11. Löschel, Andreas & Otto, Vincent M., 2009. "Technological uncertainty and cost effectiveness of CO2 emission reduction," Energy Economics, Elsevier, vol. 31(Supplemen), pages 4-17.
    12. Tsur, Yacov & Zemel, Amos, 2002. "Growth, Scarcity And R&D," Discussion Papers 14994, Hebrew University of Jerusalem, Department of Agricultural Economics and Management.
    13. Berk, Istemi & Yetkiner, Hakan, 2014. "Energy prices and economic growth in the long run: Theory and evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 228-235.
    14. Hart, Rob, 2012. "The economics of natural resources: Understanding and predicting the evolution of supply and demand," Working Paper Series 2012:01, Swedish University of Agricultural Sciences, Department Economics.
    15. Gilbert Kollenbach, 2019. "Unilateral climate policy and the green paradox: Extraction costs matter," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 52(3), pages 1036-1083, August.
    16. Fabre, Adrien & Fodha, Mouez & Ricci, Francesco, 2020. "Mineral resources for renewable energy: Optimal timing of energy production," Resource and Energy Economics, Elsevier, vol. 59(C).
    17. Tsur, Yacov & Zemel, Amos, 2005. "Scarcity, growth and R&D," Journal of Environmental Economics and Management, Elsevier, vol. 49(3), pages 484-499, May.
    18. Lafforgue, Gilles, 2008. "Stochastic technical change, non-renewable resource and optimal sustainable growth," Resource and Energy Economics, Elsevier, vol. 30(4), pages 540-554, December.
    19. Just, Richard E. & Netanyahu, Sinaia & Olson, Lars J., 2005. "Depletion of natural resources, technological uncertainty, and the adoption of technological substitutes," Resource and Energy Economics, Elsevier, vol. 27(2), pages 91-108, June.
    20. André Grimaud & Luc Rouge, 2008. "Environment, Directed Technical Change and Economic Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 41(4), pages 439-463, December.

    More about this item

    Keywords

    Exhaustible resources; Technological change;

    JEL classification:

    • Q30 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - General
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:resene:v:34:y:2012:i:3:p:271-294. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505569 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.