[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v25y2013icp272-276.html
   My bibliography  Save this article

Financial economic scenario for the microgeneration of electric energy from swine culture-originated biogas

Author

Listed:
  • Avaci, Angelica Buzinaro
  • Melegari de Souza, Samuel Nelson
  • Werncke, Ivan
  • Chaves, Luiz Inácio
Abstract
One of the largest sources of energy available in rural and agro-industrial areas is the biomass, which is found in the form of vegetal and animal residues, such as crop leftovers, animal manure, energetic plantations and agro-industrial effluents. Such residues may be used by rural producers or agro-industries for direct burning, aiming to produce heat or biogas in biodigesters. Swine production generates a large amount of manure that causes environmental issues when not treated properly, due to its high levels of methane. When it is released in the atmosphere, it expressively contributes to the greenhouse effect. The co-generation of electric energy is still one of the ways to utilize biogas generated from food production. Apart from generating energy, it is also possible to sell carbon credits, what provides the producer with higher income. The present work aimed to determine the cost of installation, as well as the feasibility of biogas-based electricity production, by studying the scale economy in several scenarios of swine, biogas and electric energy production, sale or not sale of carbon credits, and investment costs with the estimated amortization period. One can notice that when carbon credits generate profit, production costs decrease and the LPV (Liquid Present Value) increases. Energy production only leads to loss when there is no additional income with carbon credits.

Suggested Citation

  • Avaci, Angelica Buzinaro & Melegari de Souza, Samuel Nelson & Werncke, Ivan & Chaves, Luiz Inácio, 2013. "Financial economic scenario for the microgeneration of electric energy from swine culture-originated biogas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 272-276.
  • Handle: RePEc:eee:rensus:v:25:y:2013:i:c:p:272-276
    DOI: 10.1016/j.rser.2013.04.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032113002566
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2013.04.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Akbulut, Abdullah, 2012. "Techno-economic analysis of electricity and heat generation from farm-scale biogas plant: Çiçekdağı case study," Energy, Elsevier, vol. 44(1), pages 381-390.
    2. Kao, Chien-Ya & Chiu, Sheng-Yi & Huang, Tzu-Ting & Dai, Le & Hsu, Ling-Kang & Lin, Chih-Sheng, 2012. "Ability of a mutant strain of the microalga Chlorella sp. to capture carbon dioxide for biogas upgrading," Applied Energy, Elsevier, vol. 93(C), pages 176-183.
    3. Gwavuya, S.G. & Abele, S. & Barfuss, I. & Zeller, M. & Müller, J., 2012. "Household energy economics in rural Ethiopia: A cost-benefit analysis of biogas energy," Renewable Energy, Elsevier, vol. 48(C), pages 202-209.
    4. Brown, Bettina B. & Yiridoe, Emmanuel K. & Gordon, Robert, 2007. "Impact of single versus multiple policy options on the economic feasibility of biogas energy production: Swine and dairy operations in Nova Scotia," Energy Policy, Elsevier, vol. 35(9), pages 4597-4610, September.
    5. Qiao, Wei & Yan, Xiuyi & Ye, Junhui & Sun, Yifei & Wang, Wei & Zhang, Zhongzhi, 2011. "Evaluation of biogas production from different biomass wastes with/without hydrothermal pretreatment," Renewable Energy, Elsevier, vol. 36(12), pages 3313-3318.
    6. Yiridoe, Emmanuel K. & Gordon, Robert & Brown, Bettina B., 2009. "Nonmarket cobenefits and economic feasibility of on-farm biogas energy production," Energy Policy, Elsevier, vol. 37(3), pages 1170-1179, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ribeiro, Eruin Martuscelli & Barros, Regina Mambeli & Tiago Filho, Geraldo Lúcio & dos Santos, Ivan Felipe Silva & Sampaio, Luma Canobre & Santos, Ticiane Vasco dos & da Silva, Fernando das Graças Bra, 2018. "GHG avoided emissions and economic analysis by power generation potential in posture aviaries in Brazil," Renewable Energy, Elsevier, vol. 120(C), pages 524-535.
    2. Herbes, Carsten & Halbherr, Verena & Braun, Lorenz, 2018. "Factors influencing prices for heat from biogas plants," Applied Energy, Elsevier, vol. 221(C), pages 308-318.
    3. de Souza, Celso Correia & Leandro, José Paulo & dos Reis Neto, José Francisco & Frainer, Daniel Massen & Castelão, Raul Assef, 2018. "Cogeneration of electricity in sugar-alcohol plant: Perspectives and viability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 832-837.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Souza, Samuel Nelson M. de & Werncke, Ivan & Marques, Cleber Aimoni & Bariccatti, Reinaldo A. & Santos, Reginaldo F. & Nogueira, Carlos Eduardo C. & Bassegio, Doglas, 2013. "Electric energy micro-production in a rural property using biogas as primary source," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 385-391.
    2. Standish, B. & Lutge, B., 2013. "Assessing the potential for electricity generation from animal waste biogas on South African farms," Agrekon, Agricultural Economics Association of South Africa (AEASA), vol. 52(2), March.
    3. Mudasser, Muhammad & Yiridoe, Emmanuel K. & Corscadden, Kenneth, 2015. "Cost-benefit analysis of grid-connected wind–biogas hybrid energy production, by turbine capacity and site," Renewable Energy, Elsevier, vol. 80(C), pages 573-582.
    4. Kabir, H & Palash, M S & Bauer, S, 2012. "Appraisal of domestic biogas plants in Bangladesh," Bangladesh Journal of Agricultural Economics, Bangladesh Agricultural University, vol. 35(1-2).
    5. Ribeiro, Eruin Martuscelli & Barros, Regina Mambeli & Tiago Filho, Geraldo Lúcio & dos Santos, Ivan Felipe Silva & Sampaio, Luma Canobre & Santos, Ticiane Vasco dos & da Silva, Fernando das Graças Bra, 2018. "GHG avoided emissions and economic analysis by power generation potential in posture aviaries in Brazil," Renewable Energy, Elsevier, vol. 120(C), pages 524-535.
    6. Namuli, R. & Pillay, P. & Jaumard, B. & Laflamme, C.B., 2013. "Threshold herd size for commercial viability of biomass waste to energy conversion systems on rural farms," Applied Energy, Elsevier, vol. 108(C), pages 308-322.
    7. Maghanaki, M. Mohammadi & Ghobadian, B. & Najafi, G. & Galogah, R. Janzadeh, 2013. "Potential of biogas production in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 702-714.
    8. Constantin Aurelian Ionescu & Mihaela Denisa Coman & Elena Liliana Moiceanu Marin & Liliana Paschia & Nicoleta Luminita Gudanescu Nicolau & Gabriel Cucui & Dan Marius Coman & Sorina Geanina Stanescu, 2019. "The Analysis of the Economic Effects on the Greening and Recovery of the Sludge Waste Resulting from the Biogas Production Activity," Sustainability, MDPI, vol. 11(18), pages 1-19, September.
    9. Shane, Agabu & Gheewala, Shabbir H. & Phiri, Seveliano, 2017. "Rural domestic biogas supply model for Zambia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 683-697.
    10. Jia Boh Tan & Nur Syakina Jamali & Wei En Tan & Hasfalina Che Man & Zurina Zainal Abidin, 2021. "Techno-Economic Assessment of On-Farm Anaerobic Digestion System Using Attached-Biofilm Reactor in the Dairy Industry," Sustainability, MDPI, vol. 13(4), pages 1-15, February.
    11. Shane, Agabu & Gheewala, Shabbir H. & Kafwembe, Young, 2017. "Urban commercial biogas power plant model for Zambian towns," Renewable Energy, Elsevier, vol. 103(C), pages 1-14.
    12. repec:ags:ijag24:345243 is not listed on IDEAS
    13. Li, Xue & Mupondwa, Edmund, 2018. "Commercial feasibility of an integrated closed-loop ethanol-feedlot-biodigester system based on triticale feedstock in Canadian Prairies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 401-413.
    14. Meneses-Quelal Orlando & Velázquez-Martí Borja, 2020. "Pretreatment of Animal Manure Biomass to Improve Biogas Production: A Review," Energies, MDPI, vol. 13(14), pages 1-28, July.
    15. Patrizio, P. & Leduc, S. & Chinese, D. & Kraxner, F., 2017. "Internalizing the external costs of biogas supply chains in the Italian energy sector," Energy, Elsevier, vol. 125(C), pages 85-96.
    16. Rahman, Md. Mizanur & Hasan, Mohammad Mahmodul & Paatero, Jukka V. & Lahdelma, Risto, 2014. "Hybrid application of biogas and solar resources to fulfill household energy needs: A potentially viable option in rural areas of developing countries," Renewable Energy, Elsevier, vol. 68(C), pages 35-45.
    17. Khan, Muhammad Usman & Lee, Jonathan Tian En & Bashir, Muhammad Aamir & Dissanayake, Pavani Dulanja & Ok, Yong Sik & Tong, Yen Wah & Shariati, Mohammad Ali & Wu, Sarah & Ahring, Birgitte Kiaer, 2021. "Current status of biogas upgrading for direct biomethane use: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    18. Lauer, Markus & Hansen, Jason K. & Lamers, Patrick & Thrän, Daniela, 2018. "Making money from waste: The economic viability of producing biogas and biomethane in the Idaho dairy industry," Applied Energy, Elsevier, vol. 222(C), pages 621-636.
    19. Malla, Sunil & Timilsina, Govinda R, 2014. "Household cooking fuel choice and adoption of improved cookstoves in developing countries : a review," Policy Research Working Paper Series 6903, The World Bank.
    20. Coultry, James & Walsh, Eilín & McDonnell, Kevin P., 2013. "Energy and economic implications of anaerobic digestion pasteurisation regulations in Ireland," Energy, Elsevier, vol. 60(C), pages 125-128.
    21. Orive, M. & Cebrián, M. & Zufía, J., 2016. "Techno-economic anaerobic co-digestion feasibility study for two-phase olive oil mill pomace and pig slurry," Renewable Energy, Elsevier, vol. 97(C), pages 532-540.

    More about this item

    Keywords

    Biogas; Energy; Feasibility;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:25:y:2013:i:c:p:272-276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.