[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v324y2003i1p338-343.html
   My bibliography  Save this article

Inverse statistics in economics: the gain–loss asymmetry

Author

Listed:
  • Jensen, Mogens H.
  • Johansen, Anders
  • Simonsen, Ingve
Abstract
Inverse statistics in economics is considered. We argue that the natural candidate for such statistics is the investment horizons distribution. This distribution of waiting times needed to achieve a predefined level of return is obtained from (often detrended) historic asset prices. Such a distribution typically goes through a maximum at a time called the optimal investment horizon, τρ∗, since this defines the most likely waiting time for obtaining a given return ρ. By considering equal positive and negative levels of return, we report on a quantitative gain–loss asymmetry most pronounced for short horizons. It is argued that this asymmetry reflects the market dynamics and we speculate over the origin of this asymmetry.

Suggested Citation

  • Jensen, Mogens H. & Johansen, Anders & Simonsen, Ingve, 2003. "Inverse statistics in economics: the gain–loss asymmetry," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 338-343.
  • Handle: RePEc:eee:phsmap:v:324:y:2003:i:1:p:338-343
    DOI: 10.1016/S0378-4371(02)01884-8
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437102018848
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/S0378-4371(02)01884-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zou, Yongjie & Li, Honggang, 2014. "Time spans between price maxima and price minima in stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 303-309.
    2. Andrea Giuseppe Di Iura & Giulia Terenzi, 2021. "A Bayesian analysis of gain-loss asymmetry," Papers 2104.06044, arXiv.org.
    3. Filimonov, Vladimir & Sornette, Didier, 2015. "Power law scaling and “Dragon-Kings” in distributions of intraday financial drawdowns," Chaos, Solitons & Fractals, Elsevier, vol. 74(C), pages 27-45.
    4. C. M. Rodr'iguez-Mart'inez & H. F. Coronel-Brizio & A. R. Hern'andez-Montoya, 2019. "A multi-scale symmetry analysis of uninterrupted trends returns of daily financial indices," Papers 1908.11204, arXiv.org.
    5. Xiaoyu Tan & Zili Zhang & Xuejun Zhao & Shuyi Wang, 2022. "DeepPricing: pricing convertible bonds based on financial time-series generative adversarial networks," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-38, December.
    6. Ren, Fei & Guo, Liang & Zhou, Wei-Xing, 2009. "Statistical properties of volatility return intervals of Chinese stocks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(6), pages 881-890.
    7. Restocchi, Valerio & McGroarty, Frank & Gerding, Enrico, 2019. "The stylized facts of prediction markets: Analysis of price changes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 159-170.
    8. Kei Katahira & Yu Chen & Gaku Hashimoto & Hiroshi Okuda, 2019. "Development of an agent-based speculation game for higher reproducibility of financial stylized facts," Papers 1902.02040, arXiv.org.
    9. Bernabe, Araceli & Martina, Esteban & Alvarez-Ramirez, Jose & Ibarra-Valdez, Carlos, 2004. "A multi-model approach for describing crude oil price dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 338(3), pages 567-584.
    10. Katahira, Kei & Chen, Yu & Hashimoto, Gaku & Okuda, Hiroshi, 2019. "Development of an agent-based speculation game for higher reproducibility of financial stylized facts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 503-518.
    11. Zhou, Wei-Xing & Yuan, Wei-Kang, 2005. "Inverse statistics in stock markets: Universality and idiosyncracy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 353(C), pages 433-444.
    12. Cafferata, Alessia & Tramontana, Fabio, 2022. "Disposition Effect and its outcome on endogenous price fluctuations," MPRA Paper 113904, University Library of Munich, Germany.
    13. Luis Goncalves de Faria, 2022. "An Agent-Based Model With Realistic Financial Time Series: A Method for Agent-Based Models Validation," Papers 2206.09772, arXiv.org.
    14. Vladimir Filimonov & Didier Sornette, 2014. "Power law scaling and "Dragon-Kings" in distributions of intraday financial drawdowns," Papers 1407.5037, arXiv.org, revised Apr 2015.
    15. Andrea Di Iura, 2022. "Comparison of empirical and shrinkage correlation algorithm for clustering methods in the futures market," SN Business & Economics, Springer, vol. 2(8), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:324:y:2003:i:1:p:338-343. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.