[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/lauspo/v72y2018icp503-509.html
   My bibliography  Save this article

Economic impact of substituting solar photovoltaic electric production for tobacco farming

Author

Listed:
  • Krishnan, R.
  • Pearce, J.M.
Abstract
Solar photovoltaic (PV) technology represents a promising method to prevent dangerous global climate change, however full solar penetration demands substantial surface areas, possibly encroaching on arable land. To avoid repeating the mistakes of previous attempts to convert agricultural land to energy, arable land currently used for crops with known health hazards can be considered for conversion. Tobacco is the leading cause of avoidable death globally, and despite increasingly stringent controls on tobacco, economics provides an incentive to continue tobacco production. However, with the economics of PV ever improving, this study investigates the potential economic benefits of photovoltaic conversion of farms during tobacco's decline. This study analyzes key factors influencing conventional tobacco farming economics in the U.S. over a sensitivity of realistic future values. Then tobacco crop profit is compared to a sensitivity analysis covering the profits of solar PV farming on the same land. The results show that considering existing electric prices, escalation rates, and installed costs, PV farm substitution for tobacco farming makes economic sense in many U.S. cases already. In a case study of North Carolina, 30GW of PV power capacity was found to be economically viable on existing tobacco farms and if conversion took place over 2000 premature deaths could be prevented from pollution reduction alone. This meets the State's peak summer loads. Land use policies are discussed to facilitate such land use conversions for the benefit of the economy, the environment and human health.

Suggested Citation

  • Krishnan, R. & Pearce, J.M., 2018. "Economic impact of substituting solar photovoltaic electric production for tobacco farming," Land Use Policy, Elsevier, vol. 72(C), pages 503-509.
  • Handle: RePEc:eee:lauspo:v:72:y:2018:i:c:p:503-509
    DOI: 10.1016/j.landusepol.2018.01.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264837716306883
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.landusepol.2018.01.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dominic K. Albino & Karla Z. Bertrand & Yaneer Bar-Yam, 2012. "Food for fuel: The price of ethanol," Papers 1210.6080, arXiv.org.
    2. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    3. WHO World Health Organization, 2013. "Who Report On The Global Tobacco Epidemic, 2013," University of California at San Francisco, Center for Tobacco Control Research and Education qt5t06910t, Center for Tobacco Control Research and Education, UC San Francisco.
    4. Prehoda, Emily W. & Pearce, Joshua M., 2017. "Potential lives saved by replacing coal with solar photovoltaic electricity production in the U.S," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 710-715.
    5. Marco Lagi & Yavni Bar-Yam & Karla Z. Bertrand & Yaneer Bar-Yam, 2012. "UPDATE February 2012 - The Food Crises: Predictive validation of a quantitative model of food prices including speculators and ethanol conversion," Papers 1203.1313, arXiv.org, revised Mar 2012.
    6. Jacobson, Mark Z. & Delucchi, Mark A., 2011. "Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials," Energy Policy, Elsevier, vol. 39(3), pages 1154-1169, March.
    7. Wakefield, M.A. & Durkin, S. & Spittal, M.J. & Siahpush, M. & Scollo, M. & Simpson, J.A. & Chapman, S. & White, V. & Hill, D., 2008. "Impact of tobacco control policies and mass media campaigns on monthly adult smoking prevalence," American Journal of Public Health, American Public Health Association, vol. 98(8), pages 1443-1450.
    8. Who, 2011. "WHO Report on the Global Tobacco Epidemic 2011: Warning about the dangers of tobacco," University of California at San Francisco, Center for Tobacco Control Research and Education qt5np8p434, Center for Tobacco Control Research and Education, UC San Francisco.
    9. Branker, K. & Pathak, M.J.M. & Pearce, J.M., 2011. "A review of solar photovoltaic levelized cost of electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4470-4482.
    10. Duke, Richard & Williams, Robert & Payne, Adam, 2005. "Accelerating residential PV expansion: demand analysis for competitive electricity markets," Energy Policy, Elsevier, vol. 33(15), pages 1912-1929, October.
    11. Farrelly, M.C. & Pechacek, T.F. & Thomas, K.Y. & Nelson, D., 2008. "The impact of tobacco control programs on adult smoking," American Journal of Public Health, American Public Health Association, vol. 98(2), pages 304-309.
    12. Richard H. Moss & Jae A. Edmonds & Kathy A. Hibbard & Martin R. Manning & Steven K. Rose & Detlef P. van Vuuren & Timothy R. Carter & Seita Emori & Mikiko Kainuma & Tom Kram & Gerald A. Meehl & John F, 2010. "The next generation of scenarios for climate change research and assessment," Nature, Nature, vol. 463(7282), pages 747-756, February.
    13. Alafita, T. & Pearce, J.M., 2014. "Securitization of residential solar photovoltaic assets: Costs, risks and uncertainty," Energy Policy, Elsevier, vol. 67(C), pages 488-498.
    14. McDonald, N.C. & Pearce, J.M., 2010. "Producer responsibility and recycling solar photovoltaic modules," Energy Policy, Elsevier, vol. 38(11), pages 7041-7047, November.
    15. Edward Vine, 2012. "Adaptation of California’s electricity sector to climate change," Climatic Change, Springer, vol. 111(1), pages 75-99, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joshua M. Pearce, 2019. "Towards Quantifiable Metrics Warranting Industry-Wide Corporate Death Penalties," Social Sciences, MDPI, vol. 8(2), pages 1-13, February.
    2. Zhao, Qin & Zhang, Houcheng & Hu, Ziyang & Hou, Shujin, 2021. "Performance evaluation of a new hybrid system consisting of a photovoltaic module and an absorption heat transformer for electricity production and heat upgrading," Energy, Elsevier, vol. 216(C).
    3. Pascaris1, Alexis S. & Schelly, Chelsea & Rouleau, Mark & Pearce, Joshua M., 2021. "Do Agrivoltaics Improve Public Support for Solar Photovoltaic Development? Survey Says: Yes!," SocArXiv efasx, Center for Open Science.
    4. Tercan, Emre & Eymen, Abdurrahman & Urfalı, Tuğrul & Saracoglu, Burak Omer, 2021. "A sustainable framework for spatial planning of photovoltaic solar farms using GIS and multi-criteria assessment approach in Central Anatolia, Turkey," Land Use Policy, Elsevier, vol. 102(C).
    5. Walston, Leroy J. & Li, Yudi & Hartmann, Heidi M. & Macknick, Jordan & Hanson, Aaron & Nootenboom, Chris & Lonsdorf, Eric & Hellmann, Jessica, 2021. "Modeling the ecosystem services of native vegetation management practices at solar energy facilities in the Midwestern United States," Ecosystem Services, Elsevier, vol. 47(C).
    6. Uzair Jamil & Joshua M. Pearce, 2022. "Energy Policy for Agrivoltaics in Alberta Canada," Energies, MDPI, vol. 16(1), pages 1-31, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chelsea Schelly & Don Lee & Elise Matz & Joshua M. Pearce, 2021. "Applying a Relationally and Socially Embedded Decision Framework to Solar Photovoltaic Adoption: A Conceptual Exploration," Sustainability, MDPI, vol. 13(2), pages 1-18, January.
    2. Joshua M. Pearce, 2019. "Towards Quantifiable Metrics Warranting Industry-Wide Corporate Death Penalties," Social Sciences, MDPI, vol. 8(2), pages 1-13, February.
    3. Heidari, Negin & Pearce, Joshua M., 2016. "A review of greenhouse gas emission liabilities as the value of renewable energy for mitigating lawsuits for climate change related damages," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 899-908.
    4. Joshua M. Pearce & Emily Prehoda, 2019. "Could 79 People Solarize the U.S. Electric Grid?," Societies, MDPI, vol. 9(1), pages 1-27, March.
    5. Dinesh, Harshavardhan & Pearce, Joshua M., 2016. "The potential of agrivoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 299-308.
    6. Deshmukh, Swaraj Sanjay & Pearce, Joshua M., 2021. "Electric vehicle charging potential from retail parking lot solar photovoltaic awnings," Renewable Energy, Elsevier, vol. 169(C), pages 608-617.
    7. Wadhawan, Siddharth R. & Pearce, Joshua M., 2017. "Power and energy potential of mass-scale photovoltaic noise barrier deployment: A case study for the U.S," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 125-132.
    8. Ronnie D. Lipschutz & Dustin Mulvaney, 2013. "The road not taken, round II: centralized vs. distributed energy strategies and human security," Chapters, in: Hugh Dyer & Maria Julia Trombetta (ed.), International Handbook of Energy Security, chapter 22, pages 483-506, Edward Elgar Publishing.
    9. Lång, Elisabeth & Nystedt, Paul, 2018. "Blowing up money? The earnings penalty of smoking in the 1970s and the 21st century," Journal of Health Economics, Elsevier, vol. 60(C), pages 39-52.
    10. Chiara Modanese & Hannu S. Laine & Toni P. Pasanen & Hele Savin & Joshua M. Pearce, 2018. "Economic Advantages of Dry-Etched Black Silicon in Passivated Emitter Rear Cell (PERC) Photovoltaic Manufacturing," Energies, MDPI, vol. 11(9), pages 1-18, September.
    11. Harsman Tandilittin, 2016. "What should the Government do to Stop Epidemic of Smoking among Teenagers in Indonesia?," Asian Culture and History, Canadian Center of Science and Education, vol. 8(1), pages 140-140, March.
    12. Wu, Jy S. & Tseng, Hui-Kuan & Liu, Xiaoshuai, 2022. "Techno-economic assessment of bioenergy potential on marginal croplands in the U.S. southeast," Energy Policy, Elsevier, vol. 170(C).
    13. Nicole E. Statler & Amanda M. Adams & Ted C. Eckmann, 2017. "Optimizing angles of rooftop photovoltaics, ratios of solar to vegetated roof systems, and economic benefits, in Portland, Oregon, USA," Environment Systems and Decisions, Springer, vol. 37(3), pages 320-331, September.
    14. Tomosk, Steve & Haysom, Joan E. & Wright, David, 2017. "Quantifying economic risk in photovoltaic power projects," Renewable Energy, Elsevier, vol. 109(C), pages 422-433.
    15. Hernández-Moro, J. & Martínez-Duart, J.M., 2013. "Analytical model for solar PV and CSP electricity costs: Present LCOE values and their future evolution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 119-132.
    16. Sanghyun Sung & Wooyong Jung, 2019. "Economic Competitiveness Evaluation of the Energy Sources: Comparison between a Financial Model and Levelized Cost of Electricity Analysis," Energies, MDPI, vol. 12(21), pages 1-21, October.
    17. Kulatilaka, Nalin & Santiago, Leonardo & Vakili, Pirooz, 2014. "Reallocating risks and returns to scale up adoption of distributed electricity resources," Energy Policy, Elsevier, vol. 69(C), pages 566-574.
    18. Kästel, Peter & Gilroy-Scott, Bryce, 2015. "Economics of pooling small local electricity prosumers—LCOE & self-consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 718-729.
    19. Guerra, Omar J. & Tejada, Diego A. & Reklaitis, Gintaras V., 2019. "Climate change impacts and adaptation strategies for a hydro-dominated power system via stochastic optimization," Applied Energy, Elsevier, vol. 233, pages 584-598.
    20. Correa, Diego F. & Beyer, Hawthorne L. & Fargione, Joseph E. & Hill, Jason D. & Possingham, Hugh P. & Thomas-Hall, Skye R. & Schenk, Peer M., 2019. "Towards the implementation of sustainable biofuel production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 250-263.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:lauspo:v:72:y:2018:i:c:p:503-509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joice Jiang (email available below). General contact details of provider: https://www.journals.elsevier.com/land-use-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.