0. The bivariate Local Indicators of Spatial Association (LISA) analysis shows significant (p<0.05) high water scarcity and high water use efficiency correlations with regional clustering in northern China, centering on Beijing, and low water scarcity and low water use efficiency regional clustering in southern China, centering on Hunan. The coefficients of our Spatial Lag Model show that both water scarcity and water use efficiency have significant inherent spatial dependence (p<0.01), but no significant causal mechanisms (p>0.1) between them were found. We discuss the implications of influencing factors including (1) the geographical agglomeration in economics, population and freshwater supplies, (2) physical and virtual water transfer, and (3) technology and water resources management to such strong spatial patterns of water use and efficiency. This study affirms the need to pay attention to water use management and efficiency improvements together in scarce environments and especially within a geographic context."> 0. The bivariate Local Indicators of Spatial Association (LISA) analysis shows significant (p<0.05) high water scarcity and high water use efficiency correlations with regional clustering in northern China, centering on Beijing, and low water scarcity and low water use efficiency regional clustering in southern China, centering on Hunan. The coefficients of our Spatial Lag Model show that both water scarcity and water use efficiency have significant inherent spatial dependence (p<0.01), but no significant causal mechanisms (p>0.1) between them were found. We discuss the implications of influencing factors including (1) the geographical agglomeration in economics, population and freshwater supplies, (2) physical and virtual water transfer, and (3) technology and water resources management to such strong spatial patterns of water use and efficiency. This study affirms the need to pay attention to water use management and efficiency improvements together in scarce environments and especially within a geographic context.">
[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/lauspo/v69y2017icp502-511.html
   My bibliography  Save this article

Is there a relationship between water scarcity and water use efficiency in China? A national decadal assessment across spatial scales

Author

Listed:
  • Long, Kaisheng
  • Pijanowski, Bryan C.
Abstract
The relationship between water scarcity and water use efficiency is widely disputed, and despite considerable work on the topic, little attention has been paid to their spatial relationships. Using a host of spatial analyses, a variety of spatial correlations between water scarcity and water use efficiency from 2003 to 2013 in China are examined at local to national scales. The bivariate Global Spatial Autocorrelation indicates significant (p<0.001) positive spatial correlation between water scarcity and water use efficiency across all regions with bivariate Moran’s I>0. The bivariate Local Indicators of Spatial Association (LISA) analysis shows significant (p<0.05) high water scarcity and high water use efficiency correlations with regional clustering in northern China, centering on Beijing, and low water scarcity and low water use efficiency regional clustering in southern China, centering on Hunan. The coefficients of our Spatial Lag Model show that both water scarcity and water use efficiency have significant inherent spatial dependence (p<0.01), but no significant causal mechanisms (p>0.1) between them were found. We discuss the implications of influencing factors including (1) the geographical agglomeration in economics, population and freshwater supplies, (2) physical and virtual water transfer, and (3) technology and water resources management to such strong spatial patterns of water use and efficiency. This study affirms the need to pay attention to water use management and efficiency improvements together in scarce environments and especially within a geographic context.

Suggested Citation

  • Long, Kaisheng & Pijanowski, Bryan C., 2017. "Is there a relationship between water scarcity and water use efficiency in China? A national decadal assessment across spatial scales," Land Use Policy, Elsevier, vol. 69(C), pages 502-511.
  • Handle: RePEc:eee:lauspo:v:69:y:2017:i:c:p:502-511
    DOI: 10.1016/j.landusepol.2017.09.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264837717302806
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.landusepol.2017.09.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maldonado, Jorge Higinio & Moreno-Sanchez, Rocio del Pilar, 2008. "Does scarcity exacerbate the tragedy of the commons? Evidence from fishers’ experimental responses," 2008 Annual Meeting, July 27-29, 2008, Orlando, Florida 6528, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    2. Harmsen, J.H.M. & Roes, A.L. & Patel, M.K., 2013. "The impact of copper scarcity on the efficiency of 2050 global renewable energy scenarios," Energy, Elsevier, vol. 50(C), pages 62-73.
    3. Wang, Yu & Zhou, Li & Jia, Qingyu & Yu, Wenying, 2017. "Water use efficiency of a rice paddy field in Liaohe Delta, Northeast China," Agricultural Water Management, Elsevier, vol. 187(C), pages 222-231.
    4. Molden, David & Oweis, Theib & Steduto, Pasquale & Bindraban, Prem & Hanjra, Munir A. & Kijne, Jacob, 2010. "Improving agricultural water productivity: Between optimism and caution," Agricultural Water Management, Elsevier, vol. 97(4), pages 528-535, April.
    5. Rehab Osman & Emanuele Ferrari & Scott McDonald, 2016. "Water Scarcity and Irrigation Efficiency in Egypt," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(04), pages 1-28, December.
    6. Ruttanaprasert, Ruttanachira & Jogloy, Sanun & Vorasoot, Nimitr & Kesmala, Thawan & Kanwar, Rameshwar S. & Holbrook, C. Corley & Patanothai, Aran, 2016. "Effects of water stress on total biomass, tuber yield, harvest index and water use efficiency in Jerusalem artichoke," Agricultural Water Management, Elsevier, vol. 166(C), pages 130-138.
    7. Fang, Q.X. & Ma, L. & Green, T.R. & Yu, Q. & Wang, T.D. & Ahuja, L.R., 2010. "Water resources and water use efficiency in the North China Plain: Current status and agronomic management options," Agricultural Water Management, Elsevier, vol. 97(8), pages 1102-1116, August.
    8. Animesh Gain & Yoshihide Wada, 2014. "Assessment of Future Water Scarcity at Different Spatial and Temporal Scales of the Brahmaputra River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 999-1012, March.
    9. Gadanakis, Yiorgos & Bennett, Richard & Park, Julian & Areal, Francisco Jose, 2015. "Improving productivity and water use efficiency: A case study of farms in England," Agricultural Water Management, Elsevier, vol. 160(C), pages 22-32.
    10. Rijsberman, Frank R., 2006. "Water scarcity: Fact or fiction?," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 5-22, February.
    11. Xiangming Fang & Terry L. Roe & Rodney B. W. Smith, 2015. "Water shortages, intersectoral water allocation and economic growth: the case of China," China Agricultural Economic Review, Emerald Group Publishing Limited, vol. 7(1), pages 2-26, February.
    12. Jing Li & Xiao-can Ma, 2015. "Econometric analysis of industrial water use efficiency in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 17(5), pages 1209-1226, October.
    13. Peter Lawrence & Jeremy Meigh & Caroline Sullivan, 2002. "The Water Poverty Index: an International Comparison," Development and Comp Systems 0211003, University Library of Munich, Germany.
    14. Pereira, Luis S. & Cordery, Ian & Iacovides, Iacovos, 2012. "Improved indicators of water use performance and productivity for sustainable water conservation and saving," Agricultural Water Management, Elsevier, vol. 108(C), pages 39-51.
    15. O. Tzoraki & M. Kritsotakis & E. Baltas, 2015. "Spatial Water Use efficiency Index towards resource sustainability: application in the island of Crete, Greece," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 31(4), pages 669-681, December.
    16. Zhang, Huimeng & Xiong, Yunwu & Huang, Guanhua & Xu, Xu & Huang, Quanzhong, 2017. "Effects of water stress on processing tomatoes yield, quality and water use efficiency with plastic mulched drip irrigation in sandy soil of the Hetao Irrigation District," Agricultural Water Management, Elsevier, vol. 179(C), pages 205-214.
    17. Varghese, Shalet Korattukudy & Veettil, Prakashan Chellattan & Speelman, Stijn & Buysse, Jeroen & Van Huylenbroeck, Guido, 2013. "Estimating the causal effect of water scarcity on the groundwater use efficiency of rice farming in South India," Ecological Economics, Elsevier, vol. 86(C), pages 55-64.
    18. Merli, M.C. & Magnanini, E. & Gatti, M. & Pirez, F.J. & Pueyo, I. Buesa & Intrigliolo, D.S. & Poni, S., 2016. "Water stress improves whole-canopy water use efficiency and berry composition of cv. Sangiovese (Vitis vinifera L.) grapevines grafted on the new drought-tolerant rootstock M4," Agricultural Water Management, Elsevier, vol. 169(C), pages 106-114.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yali Zhao & Min Li, 2020. "Effect of Water-Saving Society Policy on Water Consumption in the Cities of China: A Propensity Score Matching Analysis," IJERPH, MDPI, vol. 17(21), pages 1-14, November.
    2. Aijun Guo & Daiwei Jiang & Fanglei Zhong & Xiaojiang Ding & Xiaoyu Song & Qingping Cheng & Yongnian Zhang & Chunlin Huang, 2019. "Prediction of Technological Change under Shared Socioeconomic Pathways and Regional Differences: A Case Study of Irrigation Water Use Efficiency Changes in Chinese Provinces," Sustainability, MDPI, vol. 11(24), pages 1-19, December.
    3. Jincai Zhao & Yiyao Wang & Xiufeng Zhang & Qianxi Liu, 2022. "Industrial and Agricultural Water Use Efficiency and Influencing Factors in the Process of Urbanization in the Middle and Lower Reaches of the Yellow River Basin, China," Land, MDPI, vol. 11(8), pages 1-18, August.
    4. Sheng, Jichuan & Qiu, Wenge, 2023. "Inter-basin water transfer policies and water-use technical efficiency: China's South-North Water Transfer Project," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    5. Min Li & Kaisheng Long, 2019. "Direct or Spillover Effect: The Impact of Pure Technical and Scale Efficiencies of Water Use on Water Scarcity in China," IJERPH, MDPI, vol. 16(18), pages 1-13, September.
    6. Nan Lu & Jiwei Zhu & Hui Chi & Bing Wang & Lu Chen, 2021. "Progress Assessment and Spatial Heterogeneity Analysis of Water Conservancy Modernization Construction in China," Sustainability, MDPI, vol. 13(7), pages 1-19, March.
    7. Bingquan Liu & Yongqing Li & Rui Hou & Hui Wang, 2019. "Does Urbanization Improve Industrial Water Consumption Efficiency?," Sustainability, MDPI, vol. 11(6), pages 1-17, March.
    8. Chong Meng & Siyang Zhou & Wei Li, 2021. "An Optimization Model for Water Management under the Dual Constraints of Water Pollution and Water Scarcity in the Fenhe River Basin, North China," Sustainability, MDPI, vol. 13(19), pages 1-18, September.
    9. Chen Qu & Wen Li & Jia Xu & Song Shi, 2023. "Blackland Conservation and Utilization, Carbon Storage and Ecological Risk in Green Space: A Case Study from Heilongjiang Province in China," IJERPH, MDPI, vol. 20(4), pages 1-21, February.
    10. Yiru Guo & Yan Hu & Ke Shi & Yuriy Bilan, 2020. "Valuation of Water Resource Green Efficiency Based on SBM–TOBIT Panel Model: Case Study from Henan Province, China," Sustainability, MDPI, vol. 12(17), pages 1-17, August.
    11. Sheng, Jichuan & Qiu, Wenge, 2022. "Water-use technical efficiency and income: Evidence from China's South-North Water Transfer Project," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    12. Gonzalez-Mathiesen, Constanza & Palma, Cristian & Jara, Cesar & Zapata, Richard, 2023. "Assessing the integration of planning instruments for urban land use and water service," Utilities Policy, Elsevier, vol. 84(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Min Li & Kaisheng Long, 2019. "Direct or Spillover Effect: The Impact of Pure Technical and Scale Efficiencies of Water Use on Water Scarcity in China," IJERPH, MDPI, vol. 16(18), pages 1-13, September.
    2. Nguyen Bich Hong & Mitsuyasu Yabe, 2017. "Improvement in irrigation water use efficiency: a strategy for climate change adaptation and sustainable development of Vietnamese tea production," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(4), pages 1247-1263, August.
    3. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Quanzhong & Xiong, Yunwu & Huo, Zailin & Huang, Guanhua, 2021. "A comprehensive analysis of water productivity in natural vegetation and various crops coexistent agro-ecosystems," Agricultural Water Management, Elsevier, vol. 243(C).
    4. Nouri, Milad & Homaee, Mehdi & Pereira, Luis S. & Bybordi, Mohammad, 2023. "Water management dilemma in the agricultural sector of Iran: A review focusing on water governance," Agricultural Water Management, Elsevier, vol. 288(C).
    5. Haorui Chen & Zhanyi Gao & Wenzhi Zeng & Jing Liu & Xiao Tan & Songjun Han & Shaoli Wang & Yongqing Zhao & Chengkun Yu, 2017. "Scale Effects of Water Saving on Irrigation Efficiency: Case Study of a Rice-Based Groundwater Irrigation System on the Sanjiang Plain, Northeast China," Sustainability, MDPI, vol. 10(1), pages 1-18, December.
    6. Bartoš, Vojtěch, 2021. "Seasonal scarcity and sharing norms," Journal of Economic Behavior & Organization, Elsevier, vol. 185(C), pages 303-316.
    7. Hatem Jemmali & Mohamed Salah Matoussi, 2012. "A Multidimensional Analysis of Water Poverty at A Local Scale- Application of Improved Water Poverty Index for Tunisia," Working Papers 730, Economic Research Forum, revised 2012.
    8. Eric Njuki & Boris E. Bravo-Ureta, 2019. "Examining irrigation productivity in U.S. agriculture using a single-factor approach," Journal of Productivity Analysis, Springer, vol. 51(2), pages 125-136, June.
    9. Zafar Hussain & Zongmin Wang & Jiaxue Wang & Haibo Yang & Muhammad Arfan & Daniyal Hassan & Wusen Wang & Muhammad Imran Azam & Muhammad Faisal, 2022. "A comparative Appraisal of Classical and Holistic Water Scarcity Indicators," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(3), pages 931-950, February.
    10. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    11. Che, Zheng & Wang, Jun & Li, Jiusheng, 2021. "Effects of water quality, irrigation amount and nitrogen applied on soil salinity and cotton production under mulched drip irrigation in arid Northwest China," Agricultural Water Management, Elsevier, vol. 247(C).
    12. Liu Liu & Zezhong Guo & Guanhua Huang & Ruotong Wang, 2019. "Water Productivity Evaluation under Multi-GCM Projections of Climate Change in Oases of the Heihe River Basin, Northwest China," IJERPH, MDPI, vol. 16(10), pages 1-17, May.
    13. Shuhong Wang & Ning Yin & Zhihai Yang, 2021. "Factors affecting sustained adoption of irrigation water-saving technologies in groundwater over-exploited areas in the North China Plain," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 10528-10546, July.
    14. Caroline A Sullivan & Hatem Jemmali, 2014. "Toward Understanding Water Conflicts in MENA Region: A Comparative Analysis Using Water Poverty Index," Working Papers 859, Economic Research Forum, revised Nov 2014.
    15. Zhou, Qing & Zhang, Yali & Wu, Feng, 2021. "Evaluation of the most proper management scale on water use efficiency and water productivity: A case study of the Heihe River Basin, China," Agricultural Water Management, Elsevier, vol. 246(C).
    16. Chen, Shilei & Huo, Zailin & Xu, Xu & Huang, Guanhua, 2019. "A conceptual agricultural water productivity model considering under field capacity soil water redistribution applicable for arid and semi-arid areas with deep groundwater," Agricultural Water Management, Elsevier, vol. 213(C), pages 309-323.
    17. Levidow, Les & Zaccaria, Daniele & Maia, Rodrigo & Vivas, Eduardo & Todorovic, Mladen & Scardigno, Alessandra, 2014. "Improving water-efficient irrigation: Prospects and difficulties of innovative practices," Agricultural Water Management, Elsevier, vol. 146(C), pages 84-94.
    18. Ane Pan & Darrell Bosch & Huimin Ma, 2017. "Assessing Water Poverty in China Using Holistic and Dynamic Principal Component Analysis," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 130(2), pages 537-561, January.
    19. Xiaoxia Zou & Yu-e Li & Qingzhu Gao & Yunfan Wan, 2012. "How water saving irrigation contributes to climate change resilience—a case study of practices in China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(2), pages 111-132, February.
    20. Varghese, Shalet Korattukudy & Veettil, Prakashan Chellattan & Speelman, Stijn & Buysse, Jeroen & Van Huylenbroeck, Guido, 2013. "Estimating the causal effect of water scarcity on the groundwater use efficiency of rice farming in South India," Ecological Economics, Elsevier, vol. 86(C), pages 55-64.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:lauspo:v:69:y:2017:i:c:p:502-511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joice Jiang (email available below). General contact details of provider: https://www.journals.elsevier.com/land-use-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.