[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/jhecon/v29y2010i1p137-150.html
   My bibliography  Save this article

Monopoly pricing of an antibiotic subject to bacterial resistance

Author

Listed:
  • Herrmann, Markus
Abstract
We develop a dynamic bio-economic model of bacterial resistance and disease transmission in which we characterize the pricing policy of a monopolist who is protected by a patent. After expiration, the monopolist behaves competitively in a generic industry having open access to the common pool of antibiotic efficacy and infection. The monopolist manages endogenously the levels of antibiotic efficacy as well as the infected population, which represent quality and market size respectively and achieves, at least temporarily, higher such levels than a hypothetically myopic monopolist who does not take into account the dynamic externalities. The pricing policy and the biological system is characterized by the turnpike property. Before the patent vanishes, the monopolist behaves more and more myopically, leading to a continuous decrease in the price of the antibiotic. Once the generic industry takes over, a discontinuous fall in price occurs. Whether a prolongation of the patent is socially desirable depends on the relative levels of antibiotic efficacy and infection.

Suggested Citation

  • Herrmann, Markus, 2010. "Monopoly pricing of an antibiotic subject to bacterial resistance," Journal of Health Economics, Elsevier, vol. 29(1), pages 137-150, January.
  • Handle: RePEc:eee:jhecon:v:29:y:2010:i:1:p:137-150
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6296(09)00135-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Coast, J. & Smith, R. D. & Millar, M. R., 1998. "An economic perspective on policy to reduce antimicrobial resistance," Social Science & Medicine, Elsevier, vol. 46(1), pages 29-38, January.
    2. Fischer, Carolyn & Laxminarayan, Ramanan, 2005. "Sequential development and exploitation of an exhaustible resource: do monopoly rights promote conservation?," Journal of Environmental Economics and Management, Elsevier, vol. 49(3), pages 500-515, May.
    3. Kenneth L. Judd, 1998. "Numerical Methods in Economics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262100711, April.
    4. Mark Gersovitz & Jeffrey S. Hammer, 2004. "The Economical Control of Infectious Diseases," Economic Journal, Royal Economic Society, vol. 114(492), pages 1-27, January.
    5. Kingston, William, 2000. "Antibiotics, invention and innovation," Research Policy, Elsevier, vol. 29(6), pages 679-710, June.
    6. Laxminarayan, Ramanan & Brown, Gardner M., 2001. "Economics of Antibiotic Resistance: A Theory of Optimal Use," Journal of Environmental Economics and Management, Elsevier, vol. 42(2), pages 183-206, September.
    7. Tisdell, Clem, 1982. "Exploitation of Techniques That Decline in Effectiveness with Use," Public Finance = Finances publiques, , vol. 37(3), pages 428-437.
    8. Stéphane Mechoulan, 2007. "Market structure and communicable diseases," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 40(2), pages 468-492, May.
    9. John B. Horowitz & H. Brian Moehring, 2004. "How property rights and patents affect antibiotic resistance," Health Economics, John Wiley & Sons, Ltd., vol. 13(6), pages 575-583, June.
    10. Herrmann, Markus & Gaudet, Gérard, 2009. "The economic dynamics of antibiotic efficacy under open access," Journal of Environmental Economics and Management, Elsevier, vol. 57(3), pages 334-350, May.
    11. Gardner Brown & Ramanan Laxminarayan, 1998. "Economics of Antibiotic Resistance," Discussion Papers in Economics at the University of Washington 0060, Department of Economics at the University of Washington.
    12. Scott Morton, Fiona M., 2000. "Barriers to entry, brand advertising, and generic entry in the US pharmaceutical industry," International Journal of Industrial Organization, Elsevier, vol. 18(7), pages 1085-1104, October.
    13. Kessing, Sebastian G. & Nuscheler, Robert, 2006. "Monopoly pricing with negative network effects: The case of vaccines," European Economic Review, Elsevier, vol. 50(4), pages 1061-1069, May.
    14. Rudholm, Niklas, 2002. "Economic implications of antibiotic resistance in a global economy," Journal of Health Economics, Elsevier, vol. 21(6), pages 1071-1083, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Klaus Kaier & S. Moog, 2012. "Economic Consequences of the Demography of MRSA Patients and the Impact of Broad-Spectrum Antimicrobials," Applied Health Economics and Health Policy, Springer, vol. 10(4), pages 227-234, July.
    2. Herrmann, Markus & Gaudet, Gérard, 2009. "The economic dynamics of antibiotic efficacy under open access," Journal of Environmental Economics and Management, Elsevier, vol. 57(3), pages 334-350, May.
    3. Lemarié, Stéphane & Marcoul, Philippe, 2018. "Coordination and information sharing about pest resistance," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 135-149.
    4. Eswaran, Mukesh & Gallini, Nancy, 2016. "Rescuing the Golden Age of Antibiotics: Can Economics Help Avert the Looming Crisis?," Economics working papers nancy_gallini-2016-9, Vancouver School of Economics, revised 04 Jul 2016.
    5. Massimo Filippini & Laura González & Giuliano Masiero, 2010. "Estimating dynamic consumption of antibiotics using panel data: the shadow effect of bacterial resistance," Quaderni della facoltà di Scienze economiche dell'Università di Lugano 1011, USI Università della Svizzera italiana.
    6. Markus Herrmann & Bruno Nkuiya, 2017. "Inducing optimal substitution between antibiotics under open access to the resource of antibiotic susceptibility," Health Economics, John Wiley & Sons, Ltd., vol. 26(6), pages 703-723, June.
    7. Herrmann, Markus & Nkuiya, Bruno & Dussault, Anne-Renée, 2013. "Innovation and antibiotic use within antibiotic classes: Market incentives and economic instruments," Resource and Energy Economics, Elsevier, vol. 35(4), pages 582-598.
    8. Barlow, Euan & Morton, Alec & Megiddo, Itamar & Colson, Abigail, 2022. "Optimal subscription models to pay for antibiotics," Social Science & Medicine, Elsevier, vol. 298(C).
    9. Belay, Dagim G. & Jensen, Jørgen D., 2020. "‘The scarlet letters’: Information disclosure and self-regulation: Evidence from antibiotic use in Denmark," Journal of Environmental Economics and Management, Elsevier, vol. 104(C).
    10. Eswaran, Mukesh & Gallini, Nancy, 2017. "Can Competition Extend the Golden Age of Antibiotics?," Microeconomics.ca working papers -2017-9, Vancouver School of Economics, revised 19 Oct 2017.
    11. Filippini, M. & Heimsch, F. & Masiero, G., 2014. "Antibiotic consumption and the role of dispensing physicians," Regional Science and Urban Economics, Elsevier, vol. 49(C), pages 242-251.
    12. M. Filippini & G. Masiero, 2012. "An empirical analysis of habit and addiction to antibiotics," Empirical Economics, Springer, vol. 42(2), pages 471-486, April.
    13. Farasat A.S. Bokhari & Franco Mariuzzo & Weijie Yan, 2019. "Antibacterial resistance and the cost of affecting demand: the case of UK antibiotics," Working Paper series, University of East Anglia, Centre for Competition Policy (CCP) 2019-03, Centre for Competition Policy, University of East Anglia, Norwich, UK..
    14. Albert, Jason, 2021. "Strategic dynamics of antibiotic use and the evolution of antibiotic-resistant infections," International Journal of Industrial Organization, Elsevier, vol. 77(C).
    15. Bialek, Sylwia, 2016. "Introducing Cattle Producer to the Hardin s World- Can Monopolies in Seed Markets Be Welfare Enhancing?," VfS Annual Conference 2016 (Augsburg): Demographic Change 145786, Verein für Socialpolitik / German Economic Association.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Herrmann, Markus & Gaudet, Gérard, 2009. "The economic dynamics of antibiotic efficacy under open access," Journal of Environmental Economics and Management, Elsevier, vol. 57(3), pages 334-350, May.
    2. Eswaran, Mukesh & Gallini, Nancy, 2017. "Can Competition Extend the Golden Age of Antibiotics?," Microeconomics.ca working papers -2017-9, Vancouver School of Economics, revised 19 Oct 2017.
    3. Stéphane Mechoulan, 2007. "Market structure and communicable diseases," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 40(2), pages 468-492, May.
    4. Eswaran, Mukesh & Gallini, Nancy, 2016. "Rescuing the Golden Age of Antibiotics: Can Economics Help Avert the Looming Crisis?," Economics working papers nancy_gallini-2016-9, Vancouver School of Economics, revised 04 Jul 2016.
    5. Herrmann, Markus & Nkuiya, Bruno & Dussault, Anne-Renée, 2013. "Innovation and antibiotic use within antibiotic classes: Market incentives and economic instruments," Resource and Energy Economics, Elsevier, vol. 35(4), pages 582-598.
    6. Albert, Jason, 2021. "Strategic dynamics of antibiotic use and the evolution of antibiotic-resistant infections," International Journal of Industrial Organization, Elsevier, vol. 77(C).
    7. Farasat A.S. Bokhari & Franco Mariuzzo & Weijie Yan, 2019. "Antibacterial resistance and the cost of affecting demand: the case of UK antibiotics," Working Paper series, University of East Anglia, Centre for Competition Policy (CCP) 2019-03, Centre for Competition Policy, University of East Anglia, Norwich, UK..
    8. Markus Herrmann & Bruno Nkuiya, 2017. "Inducing optimal substitution between antibiotics under open access to the resource of antibiotic susceptibility," Health Economics, John Wiley & Sons, Ltd., vol. 26(6), pages 703-723, June.
    9. Rowthorn, Robert & Toxvaerd, Flavio, 2012. "The Optimal Control of Infectious Diseases via Prevention and Treatment," CEPR Discussion Papers 8925, C.E.P.R. Discussion Papers.
    10. Dagim G. Belay & Tenaw G. Abate & Jørgen Dejgaard Jensen, 2020. "A Montero Auction Mechanism to Regulate Antimicrobial Consumption in Agriculture," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(5), pages 1448-1467, October.
    11. Klaus Kaier & S. Moog, 2012. "Economic Consequences of the Demography of MRSA Patients and the Impact of Broad-Spectrum Antimicrobials," Applied Health Economics and Health Policy, Springer, vol. 10(4), pages 227-234, July.
    12. Anderson, Soren T. & Laxminarayan, Ramanan & Salant, Stephen W., 2012. "Diversify or focus? Spending to combat infectious diseases when budgets are tight," Journal of Health Economics, Elsevier, vol. 31(4), pages 658-675.
    13. Belay, Dagim G. & Jensen, Jørgen D., 2020. "‘The scarlet letters’: Information disclosure and self-regulation: Evidence from antibiotic use in Denmark," Journal of Environmental Economics and Management, Elsevier, vol. 104(C).
    14. M. Filippini & G. Masiero, 2012. "An empirical analysis of habit and addiction to antibiotics," Empirical Economics, Springer, vol. 42(2), pages 471-486, April.
    15. Na Hao & Gervan Fearon, 2009. "Government Funding Policy Towards Communicable Diseases," Atlantic Economic Journal, Springer;International Atlantic Economic Society, vol. 37(2), pages 121-134, June.
    16. Bialek, Sylwia, 2016. "Introducing Cattle Producer to the Hardin s World- Can Monopolies in Seed Markets Be Welfare Enhancing?," VfS Annual Conference 2016 (Augsburg): Demographic Change 145786, Verein für Socialpolitik / German Economic Association.
    17. Gardner Brown & Ramanan Laxminarayan, 1998. "Economics of Antibiotic Resistance," Working Papers 0060, University of Washington, Department of Economics.
    18. Secchi, Silvia, 2000. "Economic issues in resistance management," ISU General Staff Papers 2000010108000013359, Iowa State University, Department of Economics.
    19. Patricia M. Danzon & Eric L. Keuffel, 2014. "Regulation of the Pharmaceutical-Biotechnology Industry," NBER Chapters, in: Economic Regulation and Its Reform: What Have We Learned?, pages 407-484, National Bureau of Economic Research, Inc.
    20. Delmond, Anthony R. & Ahmed, Haseeb, 2021. "Optimal Antimicrobial Use under Countervailing Externalities," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 46(3), September.

    More about this item

    Keywords

    Antibiotic efficacy Public health Monopoly pricing Turnpike Patent length;

    JEL classification:

    • I18 - Health, Education, and Welfare - - Health - - - Government Policy; Regulation; Public Health
    • L12 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance - - - Monopoly; Monopolization Strategies
    • Q21 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Demand and Supply; Prices

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jhecon:v:29:y:2010:i:1:p:137-150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505560 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.