[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/jbrese/v66y2013i9p1629-1636.html
   My bibliography  Save this article

Customer churn prediction in the online gambling industry: The beneficial effect of ensemble learning

Author

Listed:
  • Coussement, Kristof
  • De Bock, Koen W.
Abstract
The online gambling industry is one of the most revenue generating branches of the entertainment business, resulting in fierce competition and saturated markets. Therefore it is essential to efficiently retain gamblers. Churn prediction is a promising new alternative in customer relationship management (CRM) to analyze customer retention. It is the process of identifying gamblers with a high probability to leave the company based on their past behavior. This study investigates whether churn prediction is a valuable option in the CRM palette of the online gambling companies. Using real-life data of poker players at bwin, single algorithms, CART decision trees and generalized additive models are benchmarked to their ensemble counterparts, random forests and GAMens. The results show that churn prediction is a valuable strategy to identify and profile those customers at risk. Furthermore, the performance of the ensembles is more robust and better than the single models.

Suggested Citation

  • Coussement, Kristof & De Bock, Koen W., 2013. "Customer churn prediction in the online gambling industry: The beneficial effect of ensemble learning," Journal of Business Research, Elsevier, vol. 66(9), pages 1629-1636.
  • Handle: RePEc:eee:jbrese:v:66:y:2013:i:9:p:1629-1636
    DOI: 10.1016/j.jbusres.2012.12.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0148296312003530
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jbusres.2012.12.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. K A Smith & R J Willis & M Brooks, 2000. "An analysis of customer retention and insurance claim patterns using data mining: a case study," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(5), pages 532-541, May.
    2. James D. Dana & Michael M. Knetter, 1994. "Learning and Efficiency in a Gambling Market," Management Science, INFORMS, vol. 40(10), pages 1317-1328, October.
    3. Gary Smith & Michael Levere & Robert Kurtzman, 2009. "Poker Player Behavior After Big Wins and Big Losses," Management Science, INFORMS, vol. 55(9), pages 1547-1555, September.
    4. Coussement, Kristof & Benoit, Dries Frederik & Van den Poel, Dirk, 2009. "Improved Marketing Decision Making in a Customer Churn Prediction Context Using Generalized Additive Models," Working Papers 2009/18, Hogeschool-Universiteit Brussel, Faculteit Economie en Management.
    5. Jolley, Bill & Mizerski, Richard & Olaru, Doina, 2006. "How habit and satisfaction affects player retention for online gambling," Journal of Business Research, Elsevier, vol. 59(6), pages 770-777, June.
    6. De Bock, Koen W. & Coussement, Kristof & Van den Poel, Dirk, 2010. "Ensemble classification based on generalized additive models," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1535-1546, June.
    7. Nicholas Seybert & Robert Bloomfield, 2009. "Contagion of Wishful Thinking in Markets," Management Science, INFORMS, vol. 55(5), pages 738-751, May.
    8. Han Bleichrodt & Ulrich Schmidt, 2002. "A Context-Dependent Model of the Gambling Effect," Management Science, INFORMS, vol. 48(6), pages 802-812, June.
    9. van Wezel, Michiel & Potharst, Rob, 2007. "Improved customer choice predictions using ensemble methods," European Journal of Operational Research, Elsevier, vol. 181(1), pages 436-452, August.
    10. Bose, Indranil & Chen, Xi, 2009. "Quantitative models for direct marketing: A review from systems perspective," European Journal of Operational Research, Elsevier, vol. 195(1), pages 1-16, May.
    11. Buckinx, Wouter & Van den Poel, Dirk, 2005. "Customer base analysis: partial defection of behaviourally loyal clients in a non-contractual FMCG retail setting," European Journal of Operational Research, Elsevier, vol. 164(1), pages 252-268, July.
    12. Crone, Sven F. & Lessmann, Stefan & Stahlbock, Robert, 2006. "The impact of preprocessing on data mining: An evaluation of classifier sensitivity in direct marketing," European Journal of Operational Research, Elsevier, vol. 173(3), pages 781-800, September.
    13. Stekler, H.O. & Sendor, David & Verlander, Richard, 2010. "Issues in sports forecasting," International Journal of Forecasting, Elsevier, vol. 26(3), pages 606-621, July.
      • Herman O. Stekler & David Sendor & Richard Verlander, 2009. "Issues in Sports Forecasting," Working Papers 2009-002, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    14. Van den Poel, Dirk & Lariviere, Bart, 2004. "Customer attrition analysis for financial services using proportional hazard models," European Journal of Operational Research, Elsevier, vol. 157(1), pages 196-217, August.
    15. Cooper, Marjorie J. & Gwin, Carol F. & Wakefield, Kirk L., 2008. "Cross-functional interface and disruption in CRM projects: Is marketing from Venus and information systems from Mars?," Journal of Business Research, Elsevier, vol. 61(4), pages 292-299, April.
    16. Lemmens, A. & Croux, C., 2006. "Bagging and boosting classification trees to predict churn," Other publications TiSEM d5cb664d-5859-44db-a621-e, Tilburg University, School of Economics and Management.
    17. K. Coussement & D. Van Den Poel, 2008. "Improving Customer Attrition Prediction by Integrating Emotions from Client/Company Interaction Emails and Evaluating Multiple Classifiers," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 08/527, Ghent University, Faculty of Economics and Business Administration.
    18. Roehl, Wesley S., 1999. "Quality of Life Issues in a Casino Destination," Journal of Business Research, Elsevier, vol. 44(3), pages 223-229, March.
    19. Geng Cui & Man Leung Wong & Hon-Kwong Lui, 2006. "Machine Learning for Direct Marketing Response Models: Bayesian Networks with Evolutionary Programming," Management Science, INFORMS, vol. 52(4), pages 597-612, April.
    20. K. Coussement & D. Van Den Poel, 2006. "Churn Prediction in Subscription Services: an Application of Support Vector Machines While Comparing Two Parameter-Selection Techniques," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 06/412, Ghent University, Faculty of Economics and Business Administration.
    21. Athanassopoulos, Antreas D., 2000. "Customer Satisfaction Cues To Support Market Segmentation and Explain Switching Behavior," Journal of Business Research, Elsevier, vol. 47(3), pages 191-207, March.
    22. Mowen, John C. & Fang, Xiang & Scott, Kristin, 2009. "A hierarchical model approach for identifying the trait antecedents of general gambling propensity and of four gambling-related genres," Journal of Business Research, Elsevier, vol. 62(12), pages 1262-1268, December.
    23. McCarty, John A. & Hastak, Manoj, 2007. "Segmentation approaches in data-mining: A comparison of RFM, CHAID, and logistic regression," Journal of Business Research, Elsevier, vol. 60(6), pages 656-662, June.
    24. Ko, Eunju & Kim, Sook Hyun & Kim, Myungsoo & Woo, Ji Young, 2008. "Organizational characteristics and the CRM adoption process," Journal of Business Research, Elsevier, vol. 61(1), pages 65-74, January.
    25. Desmond Lam & Richard Mizerski, 2009. "An investigation into gambling purchases using the NBD and NBD–Dirichlet models," Marketing Letters, Springer, vol. 20(3), pages 263-276, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. K. W. De Bock & D. Van Den Poel, 2011. "An empirical evaluation of rotation-based ensemble classifiers for customer churn prediction," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 11/717, Ghent University, Faculty of Economics and Business Administration.
    2. K. W. De Bock & D. Van Den Poel, 2012. "Reconciling Performance and Interpretability in Customer Churn Prediction using Ensemble Learning based on Generalized Additive Models," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/805, Ghent University, Faculty of Economics and Business Administration.
    3. M. Ballings & D. Van Den Poel & E. Verhagen, 2013. "Evaluating the Added Value of Pictorial Data for Customer Churn Prediction," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 13/869, Ghent University, Faculty of Economics and Business Administration.
    4. Ballings, Michel & Van den Poel, Dirk, 2015. "CRM in social media: Predicting increases in Facebook usage frequency," European Journal of Operational Research, Elsevier, vol. 244(1), pages 248-260.
    5. Coussement, Kristof & Benoit, Dries Frederik & Van den Poel, Dirk, 2009. "Improved Marketing Decision Making in a Customer Churn Prediction Context Using Generalized Additive Models," Working Papers 2009/18, Hogeschool-Universiteit Brussel, Faculteit Economie en Management.
    6. Lessmann, Stefan & Voß, Stefan, 2009. "A reference model for customer-centric data mining with support vector machines," European Journal of Operational Research, Elsevier, vol. 199(2), pages 520-530, December.
    7. Verbeke, Wouter & Dejaeger, Karel & Martens, David & Hur, Joon & Baesens, Bart, 2012. "New insights into churn prediction in the telecommunication sector: A profit driven data mining approach," European Journal of Operational Research, Elsevier, vol. 218(1), pages 211-229.
    8. M. Ballings & D. Van Den Poel, 2012. "The Relevant Length of Customer Event History for Churn Prediction: How long is long enough?," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/804, Ghent University, Faculty of Economics and Business Administration.
    9. Risselada, Hans & Verhoef, Peter C. & Bijmolt, Tammo H.A., 2010. "Staying Power of Churn Prediction Models," Journal of Interactive Marketing, Elsevier, vol. 24(3), pages 198-208.
    10. Stefan Lessmann & Stefan Voß, 2010. "Customer-Centric Decision Support," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 2(2), pages 79-93, April.
    11. R Fildes & K Nikolopoulos & S F Crone & A A Syntetos, 2008. "Forecasting and operational research: a review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1150-1172, September.
    12. Coussement, Kristof & Van den Bossche, Filip A.M. & De Bock, Koen W., 2014. "Data accuracy's impact on segmentation performance: Benchmarking RFM analysis, logistic regression, and decision trees," Journal of Business Research, Elsevier, vol. 67(1), pages 2751-2758.
    13. Gattermann-Itschert, Theresa & Thonemann, Ulrich W., 2021. "How training on multiple time slices improves performance in churn prediction," European Journal of Operational Research, Elsevier, vol. 295(2), pages 664-674.
    14. Chen, Zhen-Yu & Fan, Zhi-Ping & Sun, Minghe, 2012. "A hierarchical multiple kernel support vector machine for customer churn prediction using longitudinal behavioral data," European Journal of Operational Research, Elsevier, vol. 223(2), pages 461-472.
    15. Glady, Nicolas & Baesens, Bart & Croux, Christophe, 2009. "Modeling churn using customer lifetime value," European Journal of Operational Research, Elsevier, vol. 197(1), pages 402-411, August.
    16. Tang, Leilei & Thomas, Lyn & Fletcher, Mary & Pan, Jiazhu & Marshall, Andrew, 2014. "Assessing the impact of derived behavior information on customer attrition in the financial service industry," European Journal of Operational Research, Elsevier, vol. 236(2), pages 624-633.
    17. Koen W. de Bock & Arno de Caigny, 2021. "Spline-rule ensemble classifiers with structured sparsity regularization for interpretable customer churn modeling," Post-Print hal-03391564, HAL.
    18. Matthias Bogaert & Lex Delaere, 2023. "Ensemble Methods in Customer Churn Prediction: A Comparative Analysis of the State-of-the-Art," Mathematics, MDPI, vol. 11(5), pages 1-28, February.
    19. De Caigny, Arno & Coussement, Kristof & De Bock, Koen W. & Lessmann, Stefan, 2020. "Incorporating textual information in customer churn prediction models based on a convolutional neural network," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1563-1578.
    20. Johannes Habel & Sascha Alavi & Nicolas Heinitz, 2023. "A theory of predictive sales analytics adoption," AMS Review, Springer;Academy of Marketing Science, vol. 13(1), pages 34-54, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbrese:v:66:y:2013:i:9:p:1629-1636. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbusres .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.