[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v46y2010i2p290-299.html
   My bibliography  Save this article

Applying copula models to individual claim loss reserving methods

Author

Listed:
  • Zhao, XiaoBing
  • Zhou, Xian
Abstract
The estimation of loss reserves for incurred but not reported (IBNR) claims presents an important task for insurance companies to predict their liabilities. Recently, individual claim loss models have attracted a great deal of interest in the actuarial literature, which overcome some shortcomings of aggregated claim loss models. The dependence of the event times with the delays is a crucial issue for estimating the claim loss reserving. In this article, we propose to use semi-competing risks copula and semi-survival copula models to fit the dependence structure of the event times with delays in the individual claim loss model. A nonstandard two-step procedure is applied to our setting in which the associate parameter and one margin are estimated based on an ad hoc estimator of the other margin. The asymptotic properties of the estimators are established as well. A simulation study is carried out to evaluate the performance of the proposed methods.

Suggested Citation

  • Zhao, XiaoBing & Zhou, Xian, 2010. "Applying copula models to individual claim loss reserving methods," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 290-299, April.
  • Handle: RePEc:eee:insuma:v:46:y:2010:i:2:p:290-299
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(09)00139-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wenqing He & Jerald F. Lawless, 2003. "Flexible Maximum Likelihood Methods for Bivariate Proportional Hazards Models," Biometrics, The International Biometric Society, vol. 59(4), pages 837-848, December.
    2. Larsen, Christian Roholte, 2007. "An Individual Claims Reserving Model," ASTIN Bulletin, Cambridge University Press, vol. 37(1), pages 113-132, May.
    3. Haastrup, Svend & Arjas, Elja, 1996. "Claims Reserving in Continuous Time; A Nonparametric Bayesian Approach," ASTIN Bulletin, Cambridge University Press, vol. 26(2), pages 139-164, November.
    4. Hesselager, Ole & Witting, Thomas, 1988. "A Credibility Model with Random Fluctuations in Delay Probabilities for the Prediction of IBNR Claims(*)," ASTIN Bulletin, Cambridge University Press, vol. 18(1), pages 79-90, April.
    5. Weijing Wang, 2003. "Estimating the association parameter for copula models under dependent censoring," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 257-273, February.
    6. Taylor, Greg & McGuire, Gráinne & Sullivan, James, 2008. "Individual Claim Loss Reserving Conditioned by Case Estimates," Annals of Actuarial Science, Cambridge University Press, vol. 3(1-2), pages 215-256, September.
    7. Jisheng Cui, 1999. "Nonparametric Estimation of a Delay Distribution Based on Left-Censored and Right-Truncated Data," Biometrics, The International Biometric Society, vol. 55(2), pages 345-349, June.
    8. BOUEZMARNI, Taoufik & ROMBOUTS, Jeroen VK, 2009. "Semiparametric multivariate density estimation for positive data using copulas," LIDAM Reprints CORE 2300, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. L. Peng & J. P. Fine, 2006. "Nonparametric estimation with left-truncated semicompeting risks data," Biometrika, Biometrika Trust, vol. 93(2), pages 367-383, June.
    10. Klugman, Stuart A. & Parsa, Rahul, 1999. "Fitting bivariate loss distributions with copulas," Insurance: Mathematics and Economics, Elsevier, vol. 24(1-2), pages 139-148, March.
    11. Bouezmarni, T. & Rombouts, J.V.K., 2009. "Semiparametric multivariate density estimation for positive data using copulas," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2040-2054, April.
    12. Jewell, William S., 1990. "Predicting IBNYR Events and Delays II. Discrete Time," ASTIN Bulletin, Cambridge University Press, vol. 20(1), pages 93-111, April.
    13. Kaminsky, Kenneth S., 1987. "Prediction of IBNR claim counts by modelling the distribution of report lags," Insurance: Mathematics and Economics, Elsevier, vol. 6(2), pages 151-159, April.
    14. Jin‐Jian Hsieh & Weijing Wang & A. Adam Ding, 2008. "Regression analysis based on semicompeting risks data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 3-20, February.
    15. Rivest, Louis-Paul & Wells, Martin T., 2001. "A Martingale Approach to the Copula-Graphic Estimator for the Survival Function under Dependent Censoring," Journal of Multivariate Analysis, Elsevier, vol. 79(1), pages 138-155, October.
    16. Jean-Philippe Boucher & Michel Denuit & Montserrat Guillén, 2007. "Risk Classification for Claim Counts," North American Actuarial Journal, Taylor & Francis Journals, vol. 11(4), pages 110-131.
    17. Lajmi Lakhal Chaieb & Louis-Paul Rivest & Belkacem Abdous, 2006. "Estimating survival under a dependent truncation," Biometrika, Biometrika Trust, vol. 93(3), pages 655-669, September.
    18. Chiung-Yu Huang & Mei-Cheng Wang, 2004. "Joint Modeling and Estimation for Recurrent Event Processes and Failure Time Data," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 1153-1165, December.
    19. Yi Li & Ram C. Tiwari & Subharup Guha, 2007. "Mixture cure survival models with dependent censoring," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(3), pages 285-306, June.
    20. Spreeuw, Jaap & Goovaerts, Marc, 1998. "Prediction of claim numbers based on hazard rates," Insurance: Mathematics and Economics, Elsevier, vol. 23(1), pages 59-69, October.
    21. Herbst, Tomas, 1999. "An application of randomly truncated data models in reserving IBNR claims," Insurance: Mathematics and Economics, Elsevier, vol. 25(2), pages 123-131, November.
    22. Joe, Harry, 2005. "Asymptotic efficiency of the two-stage estimation method for copula-based models," Journal of Multivariate Analysis, Elsevier, vol. 94(2), pages 401-419, June.
    23. Jewell, William S., 1989. "Predicting Ibnyr Events and Delays: I. Continuous Time," ASTIN Bulletin, Cambridge University Press, vol. 19(1), pages 25-55, April.
    24. Edward Frees & Emiliano Valdez, 1998. "Understanding Relationships Using Copulas," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(1), pages 1-25.
    25. Norberg, Ragnar, 1993. "Prediction of Outstanding Liabilities in Non-Life Insurance1," ASTIN Bulletin, Cambridge University Press, vol. 23(1), pages 95-115, May.
    26. Boucher, Jean-Philippe & Denuit, Michel, 2008. "Credibility premiums for the zero-inflated Poisson model and new hunger for bonus interpretation," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 727-735, April.
    27. Limin Peng & Jason P. Fine, 2007. "Regression Modeling of Semicompeting Risks Data," Biometrics, The International Biometric Society, vol. 63(1), pages 96-108, March.
    28. Frees, Edward W. & Wang, Ping, 2006. "Copula credibility for aggregate loss models," Insurance: Mathematics and Economics, Elsevier, vol. 38(2), pages 360-373, April.
    29. Kaishev, Vladimir K. & Dimitrova, Dimitrina S., 2006. "Excess of loss reinsurance under joint survival optimality," Insurance: Mathematics and Economics, Elsevier, vol. 39(3), pages 376-389, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maciak, Matúš & Okhrin, Ostap & Pešta, Michal, 2021. "Infinitely stochastic micro reserving," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 30-58.
    2. Stephan M. Bischofberger, 2020. "In-Sample Hazard Forecasting Based on Survival Models with Operational Time," Risks, MDPI, vol. 8(1), pages 1-17, January.
    3. Avanzi, Benjamin & Taylor, Greg & Wong, Bernard & Yang, Xinda, 2021. "On the modelling of multivariate counts with Cox processes and dependent shot noise intensities," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 9-24.
    4. Shi, Peng & Valdez, Emiliano A., 2014. "Multivariate negative binomial models for insurance claim counts," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 18-29.
    5. Francis Duval & Mathieu Pigeon, 2019. "Individual Loss Reserving Using a Gradient Boosting-Based Approach," Risks, MDPI, vol. 7(3), pages 1-18, July.
    6. Arthur Charpentier & Mathieu Pigeon, 2016. "Macro vs. Micro Methods in Non-Life Claims Reserving (an Econometric Perspective)," Risks, MDPI, vol. 4(2), pages 1-18, May.
    7. Jackson P. Lautier & Vladimir Pozdnyakov & Jun Yan, 2022. "Pricing Time-to-Event Contingent Cash Flows: A Discrete-Time Survival Analysis Approach," Papers 2201.04981, arXiv.org, revised Jan 2023.
    8. Araichi, Sawssen & Peretti, Christian de & Belkacem, Lotfi, 2017. "Reserve modelling and the aggregation of risks using time varying copula models," Economic Modelling, Elsevier, vol. 67(C), pages 149-158.
    9. Marie Michaelides & Mathieu Pigeon & H'el`ene Cossette, 2022. "Individual Claims Reserving using Activation Patterns," Papers 2208.08430, arXiv.org, revised Aug 2023.
    10. Mejdoub, Hanène & Ben Arab, Mounira, 2018. "Impact of dependence modeling of non-life insurance risks on capital requirement: D-Vine Copula approach," Research in International Business and Finance, Elsevier, vol. 45(C), pages 208-218.
    11. Michel Denuit & Yang Lu, 2021. "Wishart‐gamma random effects models with applications to nonlife insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(2), pages 443-481, June.
    12. Mat'uv{s} Maciak & Ostap Okhrin & Michal Pev{s}ta, 2018. "Dynamic and granular loss reserving with copulae," Papers 1801.01792, arXiv.org.
    13. Ihsan Chaoubi & Camille Besse & H'el`ene Cossette & Marie-Pier C^ot'e, 2022. "Micro-level Reserving for General Insurance Claims using a Long Short-Term Memory Network," Papers 2201.13267, arXiv.org.
    14. Lopez, Olivier, 2019. "A censored copula model for micro-level claim reserving," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 1-14.
    15. Hanene MEJDOUB & Mounira BEN ARAB, 2017. "A Multivariate Analysis for Risk Capital Estimation in Insurance Industry: Vine Copulas," Asian Development Policy Review, Asian Economic and Social Society, vol. 5(2), pages 100-119, June.
    16. Avanzi, Benjamin & Wong, Bernard & Yang, Xinda, 2016. "A micro-level claim count model with overdispersion and reporting delays," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 1-14.
    17. Fersini, Paola & Melisi, Giuseppe, 2016. "Stochastic model to evaluate the fair value of motor third-party liability under the direct reimbursement scheme and quantification of the capital requirement in a Solvency II perspective," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 27-44.
    18. Yun-Hee Choi & Laurent Briollais & Aung K. Win & John Hopper & Dan Buchanan & Mark Jenkins & Lajmi Lakhal-Chaieb, 2017. "Modeling of successive cancer risks in Lynch syndrome families in the presence of competing risks using copulas," Biometrics, The International Biometric Society, vol. 73(1), pages 271-282, March.
    19. Benjamin Avanzi & Gregory Clive Taylor & Bernard Wong & Xinda Yang, 2020. "On the modelling of multivariate counts with Cox processes and dependent shot noise intensities," Papers 2004.11169, arXiv.org, revised Dec 2020.
    20. Badescu, Andrei L. & Lin, X. Sheldon & Tang, Dameng, 2016. "A marked Cox model for the number of IBNR claims: Theory," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 29-37.
    21. Yanwei Zhang & Vanja Dukic, 2013. "Predicting Multivariate Insurance Loss Payments Under the Bayesian Copula Framework," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(4), pages 891-919, December.
    22. Mat'uv{s} Maciak & Ostap Okhrin & Michal Pev{s}ta, 2019. "Infinitely Stochastic Micro Forecasting," Papers 1908.10636, arXiv.org, revised Sep 2019.
    23. Yanez, Juan Sebastian & Pigeon, Mathieu, 2021. "Micro-level parametric duration-frequency-severity modeling for outstanding claim payments," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 106-119.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Xiao Bing & Zhou, Xian & Wang, Jing Long, 2009. "Semiparametric model for prediction of individual claim loss reserving," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 1-8, August.
    2. Richard J. Verrall & Mario V. Wüthrich, 2016. "Understanding Reporting Delay in General Insurance," Risks, MDPI, vol. 4(3), pages 1-36, July.
    3. Mat'uv{s} Maciak & Ostap Okhrin & Michal Pev{s}ta, 2019. "Infinitely Stochastic Micro Forecasting," Papers 1908.10636, arXiv.org, revised Sep 2019.
    4. Mat'uv{s} Maciak & Ostap Okhrin & Michal Pev{s}ta, 2018. "Dynamic and granular loss reserving with copulae," Papers 1801.01792, arXiv.org.
    5. Maciak, Matúš & Okhrin, Ostap & Pešta, Michal, 2021. "Infinitely stochastic micro reserving," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 30-58.
    6. Francis Duval & Mathieu Pigeon, 2019. "Individual Loss Reserving Using a Gradient Boosting-Based Approach," Risks, MDPI, vol. 7(3), pages 1-18, July.
    7. Stephan M. Bischofberger, 2020. "In-Sample Hazard Forecasting Based on Survival Models with Operational Time," Risks, MDPI, vol. 8(1), pages 1-17, January.
    8. Zhao, Xiaobing & Zhou, Xian, 2012. "Estimation of medical costs by copula models with dynamic change of health status," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 480-491.
    9. Huazhen Lin & Ling Zhou & Chunhong Li & Yi Li, 2014. "Semiparametric transformation models for semicompeting survival data," Biometrics, The International Biometric Society, vol. 70(3), pages 599-607, September.
    10. Ding, A. Adam, 2010. "Identifiability conditions for covariate effects model on survival times under informative censoring," Statistics & Probability Letters, Elsevier, vol. 80(11-12), pages 911-915, June.
    11. Zhao, Xiaobing & Zhou, Xian, 2012. "Modeling gap times between recurrent events by marginal rate function," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 370-383.
    12. Crevecoeur, Jonas & Antonio, Katrien & Desmedt, Stijn & Masquelein, Alexandre, 2023. "Bridging the gap between pricing and reserving with an occurrence and development model for non-life insurance claims," ASTIN Bulletin, Cambridge University Press, vol. 53(2), pages 185-212, May.
    13. Hsieh, Jin-Jian & Hsu, Chia-Hao, 2018. "Estimation of the survival function with redistribution algorithm under semi-competing risks data," Statistics & Probability Letters, Elsevier, vol. 132(C), pages 1-6.
    14. Huang, Jinlong & Qiu, Chunjuan & Wu, Xianyi & Zhou, Xian, 2015. "An individual loss reserving model with independent reporting and settlement," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 232-245.
    15. Crevecoeur, Jonas & Antonio, Katrien & Verbelen, Roel, 2019. "Modeling the number of hidden events subject to observation delay," European Journal of Operational Research, Elsevier, vol. 277(3), pages 930-944.
    16. Fei Jiang & Sebastien Haneuse, 2017. "A Semi-parametric Transformation Frailty Model for Semi-competing Risks Survival Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 112-129, March.
    17. Menggang Yu & Constantin T. Yiannoutsos, 2015. "Marginal and Conditional Distribution Estimation from Double-sampled Semi-competing Risks Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 87-103, March.
    18. Ihsan Chaoubi & Camille Besse & H'el`ene Cossette & Marie-Pier C^ot'e, 2022. "Micro-level Reserving for General Insurance Claims using a Long Short-Term Memory Network," Papers 2201.13267, arXiv.org.
    19. Benjamin Avanzi & Gregory Clive Taylor & Bernard Wong & Xinda Yang, 2020. "On the modelling of multivariate counts with Cox processes and dependent shot noise intensities," Papers 2004.11169, arXiv.org, revised Dec 2020.
    20. Li, Deyuan & Peng, Liang, 2009. "Goodness-of-fit test for tail copulas modeled by elliptical copulas," Statistics & Probability Letters, Elsevier, vol. 79(8), pages 1097-1104, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:46:y:2010:i:2:p:290-299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.