[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v38y2010i2p1108-1118.html
   My bibliography  Save this article

Environmental efficiency of the Indian cement industry: An interstate analysis

Author

Listed:
  • Kumar Mandal, Sabuj
  • Madheswaran, S.
Abstract
Coal combustion, for the production of cement, generates considerable amount of environmentally detrimental carbon dioxide as an undesirable by-product. Thus, this paper aims at measuring environmental efficiency within a joint production framework of both desirable and undesirable output using Data Envelopment Analysis and Directional Distance Function. Carbon dioxide is considered as an input in one context and as an undesirable output in the other with the environmental efficiency being defined accordingly. Using 3 digit sate level data from the Annual Survey of Industries for the years 2000-2001 through 2004-2005, the proposed models are applied to estimate environmental efficiency of Indian cement industry. Empirical results show that there is enough potential for the industry to improve its environmental efficiency with efficiency being varied across states. Results also show that Indian cement industry, if faced with environmental regulation, has the potential to expand desirable output and contract undesirable output with the given inputs. However, regulation has a potential cost in terms of lower feasible expansion of desirable output as compared to unregulated scenario.

Suggested Citation

  • Kumar Mandal, Sabuj & Madheswaran, S., 2010. "Environmental efficiency of the Indian cement industry: An interstate analysis," Energy Policy, Elsevier, vol. 38(2), pages 1108-1118, February.
  • Handle: RePEc:eee:enepol:v:38:y:2010:i:2:p:1108-1118
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(09)00822-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Nag, Barnali & Parikh, Jyoti, 2000. "Indicators of carbon emission intensity from commercial energy use in India," Energy Economics, Elsevier, vol. 22(4), pages 441-461, August.
    2. Zhou, P. & Ang, B.W., 2008. "Linear programming models for measuring economy-wide energy efficiency performance," Energy Policy, Elsevier, vol. 36(8), pages 2901-2906, August.
    3. Picazo-Tadeo, Andres J. & Reig-Martinez, Ernest & Hernandez-Sancho, Francesc, 2005. "Directional distance functions and environmental regulation," Resource and Energy Economics, Elsevier, vol. 27(2), pages 131-142, June.
    4. Ray,Subhash C., 2012. "Data Envelopment Analysis," Cambridge Books, Cambridge University Press, number 9781107405264, September.
    5. Watanabe, Michio & Tanaka, Katsuya, 2007. "Efficiency analysis of Chinese industry: A directional distance function approach," Energy Policy, Elsevier, vol. 35(12), pages 6323-6331, December.
    6. Mukherjee, Kankana, 2008. "Energy use efficiency in the Indian manufacturing sector: An interstate analysis," Energy Policy, Elsevier, vol. 36(2), pages 662-672, February.
    7. Luenberger, David G., 1992. "Benefit functions and duality," Journal of Mathematical Economics, Elsevier, vol. 21(5), pages 461-481.
    8. Taskin, Fatma & Zaim, Osman, 2000. "Searching for a Kuznets curve in environmental efficiency using kernel estimation," Economics Letters, Elsevier, vol. 68(2), pages 217-223, August.
    9. Chambers, Robert G. & Fare, Rolf & Grosskopf, Shawna, 1996. "Productivity Growth in APEC Countries," Working Papers 197843, University of Maryland, Department of Agricultural and Resource Economics.
    10. Fare, Rolf & Grosskopf, Shawna & Noh, Dong-Woon & Weber, William, 2005. "Characteristics of a polluting technology: theory and practice," Journal of Econometrics, Elsevier, vol. 126(2), pages 469-492, June.
    11. Färe, Rolf & Grosskopf, Shawna & Pasurka, Carl A., 2007. "Environmental production functions and environmental directional distance functions," Energy, Elsevier, vol. 32(7), pages 1055-1066.
    12. Russell W. Pittman, 1981. "Issue in Pollution Control: Interplant Cost Differences and Economies of Scale," Land Economics, University of Wisconsin Press, vol. 57(1), pages 1-17.
    13. Osman Zaim & Fatma Taskin, 2000. "A Kuznets Curve in Environmental Efficiency: An Application on OECD Countries," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 17(1), pages 21-36, September.
    14. Reinhard, Stijn & Knox Lovell, C. A. & Thijssen, Geert J., 2000. "Environmental efficiency with multiple environmentally detrimental variables; estimated with SFA and DEA," European Journal of Operational Research, Elsevier, vol. 121(2), pages 287-303, March.
    15. Paul, Shyamal & Bhattacharya, Rabindra Nath, 2004. "CO2 emission from energy use in India: a decomposition analysis," Energy Policy, Elsevier, vol. 32(5), pages 585-593, March.
    16. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    17. Fare, Rolf, et al, 1989. "Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 90-98, February.
    18. Rolf Färe & Shawna Grosskopf, 2000. "Theory and Application of Directional Distance Functions," Journal of Productivity Analysis, Springer, vol. 13(2), pages 93-103, March.
    19. Cropper, Maureen L & Oates, Wallace E, 1992. "Environmental Economics: A Survey," Journal of Economic Literature, American Economic Association, vol. 30(2), pages 675-740, June.
    20. Chambers, Robert G. & Chung, Yangho & Fare, Rolf, 1996. "Benefit and Distance Functions," Journal of Economic Theory, Elsevier, vol. 70(2), pages 407-419, August.
    21. Srivastava, Leena, 1997. "Energy and CO2 emissions in India: increasing trends and alarming portents," Energy Policy, Elsevier, vol. 25(11), pages 941-949, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    2. Ke Wang & Yujiao Xian & Chia-Yen Lee & Yi-Ming Wei & Zhimin Huang, 2019. "On selecting directions for directional distance functions in a non-parametric framework: a review," Annals of Operations Research, Springer, vol. 278(1), pages 43-76, July.
    3. Abad, Arnaud & Briec, Walter, 2019. "On the axiomatic of pollution-generating technologies: Non-parametric production analysis," European Journal of Operational Research, Elsevier, vol. 277(1), pages 377-390.
    4. Kounetas, Konstantinos & Stergiou, Eirini, 2019. "Technology heterogeneity in European industries' energy efficiency performance. The role of climate, greenhouse gases, path dependence and energy mix," MPRA Paper 92314, University Library of Munich, Germany.
    5. Trinks, Arjan & Mulder, Machiel & Scholtens, Bert, 2020. "An Efficiency Perspective on Carbon Emissions and Financial Performance," Ecological Economics, Elsevier, vol. 175(C).
    6. Subhash C. Ray, 2014. "Data Envelopment Analysis: An Overview," Working papers 2014-33, University of Connecticut, Department of Economics.
    7. Sabuj Kumar Mandal & S Madheswaran, 2009. "Energy Use Efficiency in Indian Cement Industry: Application of Data Envelopment Analysis and Directional Distance Function," Working Papers 230, Institute for Social and Economic Change, Bangalore.
    8. Salnykov Mykhaylo & Zelenyuk Valentin, 2005. "Estimation of environmental efficiencies of economies and shadow prices of pollutants in countries in transition," EERC Working Paper Series 05-06e, EERC Research Network, Russia and CIS.
    9. Annageldy Arazmuradov, 2016. "Economic prospect on carbon emissions in Commonwealth of Independent States," Economic Change and Restructuring, Springer, vol. 49(4), pages 395-427, November.
    10. Yuan, Qianqian & Fang Chin Cheng, Charles & Wang, Jiayu & Zhu, Tian-Tian & Wang, Ke, 2020. "Inclusive and sustainable industrial development in China: An efficiency-based analysis for current status and improving potentials," Applied Energy, Elsevier, vol. 268(C).
    11. Behrouz Arabi & Susila Munisamy Doraisamy & Ali Emrouznejad & Alireza Khoshroo, 2017. "Eco-efficiency measurement and material balance principle: an application in power plants Malmquist Luenberger Index," Annals of Operations Research, Springer, vol. 255(1), pages 221-239, August.
    12. Subhash C. Ray & Kankana Mukherjee & Anand Venkatesh, 2018. "Nonparametric measures of efficiency in the presence of undesirable outputs: a by-production approach," Empirical Economics, Springer, vol. 54(1), pages 31-65, February.
    13. Vogel, Everton & Dalheimer, Bernhard & Beber, Caetano Luiz & de Mori, Claudia & Palhares, Julio Cesar Pascale & Novo, André Luiz Monteiro, 2023. "Environmental efficiency and methane abatement costs of dairy farms from Minas Gerais, Brazil," Food Policy, Elsevier, vol. 119(C).
    14. George Halkos & Nickolaos Tzeremes, 2014. "Measuring the effect of Kyoto protocol agreement on countries’ environmental efficiency in CO 2 emissions: an application of conditional full frontiers," Journal of Productivity Analysis, Springer, vol. 41(3), pages 367-382, June.
    15. Bruno, Clementina & Manello, Alessandro, 2015. "Benchmarking and effects of reforms in the fixed telecommunications industry: A DDF approach," Telecommunications Policy, Elsevier, vol. 39(2), pages 127-139.
    16. Subhash C. Ray & Shilpa Sethia, 2024. "A state-level resource allocation model for emission reduction and efficiency improvement in thermal power plants," Indian Economic Review, Springer, vol. 59(1), pages 205-257, October.
    17. Bhat, Javed Ahmad & Haider, Salman & Kamaiah, Bandi, 2018. "Interstate energy efficiency of Indian paper industry: A slack-based non-parametric approach," Energy, Elsevier, vol. 161(C), pages 284-298.
    18. Soledad Moya & Jordi Perramon & Anselm Constans, 2005. "IFRS Adoption in Europe: The Case of Germany," Working Papers 0501, Departament Empresa, Universitat Autònoma de Barcelona, revised Feb 2005.
    19. Napolitano, Oreste & Foresti, Pasquale & Kounetas, Konstantinos & Spagnolo, Nicola, 2023. "The impact of energy, renewable and CO2 emissions efficiency on countries’ productivity," Energy Economics, Elsevier, vol. 125(C).
    20. Yu, Ming-Miin & Rakshit, Ipsita, 2023. "Target setting for airlines incorporating CO2 emissions: The DEA bargaining approach," Journal of Air Transport Management, Elsevier, vol. 108(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:38:y:2010:i:2:p:1108-1118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.