[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v132y2019icp702-713.html
   My bibliography  Save this article

Wind balancing costs in a power system with high wind penetration – Evidence from Portugal

Author

Listed:
  • Frade, Pedro M.S.
  • Pereira, João Pedro
  • Santana, J.J.E.
  • Catalão, J.P.S.
Abstract
The growth of intermittent renewable power generation has been drawing attention to the design of balancing markets. Portugal is an interesting case study because wind generation already accounts for a high fraction of demand (23% in 2012–2016), but still there are no economic incentives for efficient wind forecasting (wind balancing costs are passed to end consumers). We analyze the evolution of the balancing market from 2012 to 2016. Using actual market data, we find wind balancing costs around 2 euros per MWh of generated energy. One main reason for these low costs is the existence of a robust transmission grid, which allows for the compensation of positive with negative wind imbalances across the system. Nevertheless, the results suggest that final consumers could save several million euros per year if wind generators were made responsible for the economic cost of their imbalances, in line with other European markets.

Suggested Citation

  • Frade, Pedro M.S. & Pereira, João Pedro & Santana, J.J.E. & Catalão, J.P.S., 2019. "Wind balancing costs in a power system with high wind penetration – Evidence from Portugal," Energy Policy, Elsevier, vol. 132(C), pages 702-713.
  • Handle: RePEc:eee:enepol:v:132:y:2019:i:c:p:702-713
    DOI: 10.1016/j.enpol.2019.06.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421519303763
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2019.06.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chaves-Ávila, J.P. & Fernandes, C., 2015. "The Spanish intraday market design: A successful solution to balance renewable generation?," Renewable Energy, Elsevier, vol. 74(C), pages 422-432.
    2. Peña, Ivonne & Lima Azevedo, Inês & Ferreira, Luís António Fialho Marcelino, 2014. "Economic analysis of the profitability of existing wind parks in Portugal," Energy Economics, Elsevier, vol. 45(C), pages 353-363.
    3. Mehtap Kilic & Elisa Trujillo-Baute, 2014. "The stabilizing effect of hydro reservoir levels on intraday power prices under wind forecast errors," Working Papers 2014/30, Institut d'Economia de Barcelona (IEB).
    4. Peña, Ivonne & L. Azevedo, Inês & Marcelino Ferreira, Luís António Fialho, 2017. "Lessons from wind policy in Portugal," Energy Policy, Elsevier, vol. 103(C), pages 193-202.
    5. Holttinen, H., 2005. "Optimal electricity market for wind power," Energy Policy, Elsevier, vol. 33(16), pages 2052-2063, November.
    6. Mehtap Kilic & Elisa Trujillo-Baute, 2014. "The stabilizing effect of hydro reservoir levels on intraday power prices under wind forecast errors," Working Papers 2014/30, Institut d'Economia de Barcelona (IEB).
    7. Vandezande, Leen & Meeus, Leonardo & Belmans, Ronnie & Saguan, Marcelo & Glachant, Jean-Michel, 2010. "Well-functioning balancing markets: A prerequisite for wind power integration," Energy Policy, Elsevier, vol. 38(7), pages 3146-3154, July.
    8. Chaves-Ávila, J.P. & Hakvoort, R.A. & Ramos, A., 2014. "The impact of European balancing rules on wind power economics and on short-term bidding strategies," Energy Policy, Elsevier, vol. 68(C), pages 383-393.
    9. Bueno-Lorenzo, Miriam & Moreno, M. Ángeles & Usaola, Julio, 2013. "Analysis of the imbalance price scheme in the Spanish electricity market: A wind power test case," Energy Policy, Elsevier, vol. 62(C), pages 1010-1019.
    10. Hirth, Lion & Ziegenhagen, Inka, 2015. "Balancing power and variable renewables: Three links," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1035-1051.
    11. Ocker, Fabian & Ehrhart, Karl-Martin, 2017. "The “German Paradox” in the balancing power markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 892-898.
    12. Katzenstein, Warren & Apt, Jay, 2012. "The cost of wind power variability," Energy Policy, Elsevier, vol. 51(C), pages 233-243.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Forbes, Kevin F. & Zampelli, Ernest M., 2020. "Accuracy of wind energy forecasts in Great Britain and prospects for improvement," Utilities Policy, Elsevier, vol. 67(C).
    2. Henrik Nordström & Lennart Söder & Damian Flynn & Julia Matevosyan & Juha Kiviluoma & Hannele Holttinen & Til Kristian Vrana & Adriaan van der Welle & Germán Morales-España & Danny Pudjianto & Goran S, 2023. "Strategies for Continuous Balancing in Future Power Systems with High Wind and Solar Shares," Energies, MDPI, vol. 16(14), pages 1-43, July.
    3. Qingbin Yu & Yuliang Dong & Yanjun Du & Jiahai Yuan & Fang Fang, 2022. "Optimizing Operation Strategy in a Simulated High-Proportion Wind Power Wind–Coal Combined Base Load Power Generation System under Multiple Scenes," Energies, MDPI, vol. 15(21), pages 1-21, October.
    4. Sirin, Selahattin Murat & Yilmaz, Berna N., 2020. "Variable renewable energy technologies in the Turkish electricity market: Quantile regression analysis of the merit-order effect," Energy Policy, Elsevier, vol. 144(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joos, Michael & Staffell, Iain, 2018. "Short-term integration costs of variable renewable energy: Wind curtailment and balancing in Britain and Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 86(C), pages 45-65.
    2. Batalla-Bejerano, Joan & Costa-Campi, Maria Teresa & Trujillo-Baute, Elisa, 2016. "Collateral effects of liberalisation: Metering, losses, load profiles and cost settlement in Spain’s electricity system," Energy Policy, Elsevier, vol. 94(C), pages 421-431.
    3. Di Cosmo, Valeria & Malaguzzi Valeri, Laura, 2018. "Wind, storage, interconnection and the cost of electricity generation," Energy Economics, Elsevier, vol. 69(C), pages 1-18.
    4. Hirth, Lion & Ueckerdt, Falko & Edenhofer, Ottmar, 2015. "Integration costs revisited – An economic framework for wind and solar variability," Renewable Energy, Elsevier, vol. 74(C), pages 925-939.
    5. Joan Batalla-Bejerano & Elisa Trujillo-Baute, 2015. "Analysing the sensitivity of electricity system operational costs to deviations in supply and demand," Working Papers 2015/8, Institut d'Economia de Barcelona (IEB).
    6. Pape, Christian, 2018. "The impact of intraday markets on the market value of flexibility — Decomposing effects on profile and the imbalance costs," Energy Economics, Elsevier, vol. 76(C), pages 186-201.
    7. Brijs, Tom & De Jonghe, Cedric & Hobbs, Benjamin F. & Belmans, Ronnie, 2017. "Interactions between the design of short-term electricity markets in the CWE region and power system flexibility," Applied Energy, Elsevier, vol. 195(C), pages 36-51.
    8. Gianfreda, Angelica & Parisio, Lucia & Pelagatti, Matteo, 2018. "A review of balancing costs in Italy before and after RES introduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 549-563.
    9. Deman, Laureen & Boucher, Quentin, 2023. "Impact of renewable energy generation on power reserve energy demand," Energy Economics, Elsevier, vol. 128(C).
    10. Fernandes, Camila & Frías, Pablo & Reneses, Javier, 2016. "Participation of intermittent renewable generators in balancing mechanisms: A closer look into the Spanish market design," Renewable Energy, Elsevier, vol. 89(C), pages 305-316.
    11. Lobato, E. & Doenges, K. & Egido, I. & Sigrist, L., 2020. "Limits to wind aggregation: Empirical assessment in the Spanish electricity system," Renewable Energy, Elsevier, vol. 147(P1), pages 1321-1330.
    12. Wu, Zhaoyuan & Zhou, Ming & Li, Gengyin & Zhao, Tong & Zhang, Yan & Liu, Xiaojuan, 2020. "Interaction between balancing market design and market behaviour of wind power producers in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    13. Hu, Jing & Harmsen, Robert & Crijns-Graus, Wina & Worrell, Ernst & van den Broek, Machteld, 2018. "Identifying barriers to large-scale integration of variable renewable electricity into the electricity market: A literature review of market design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2181-2195.
    14. Christian Pape, 2017. "The impact of intraday markets on the market value of flexibility–Decomposing effects on profile and the imbalance costs," EWL Working Papers 1711, University of Duisburg-Essen, Chair for Management Science and Energy Economics, revised Dec 2017.
    15. Lion Hirth, Falko Ueckerdt, and Ottmar Edenhofer, 2016. "Why Wind Is Not Coal: On the Economics of Electricity Generation," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    16. Lyons, Selina & Whale, Jonathan & Wood, Justin, 2018. "Wind power variations during storms and their impact on balancing generators and carbon emissions in the Australian National Electricity Market," Renewable Energy, Elsevier, vol. 118(C), pages 1052-1063.
    17. Sirin, Selahattin Murat & Yilmaz, Berna N., 2021. "The impact of variable renewable energy technologies on electricity markets: An analysis of the Turkish balancing market," Energy Policy, Elsevier, vol. 151(C).
    18. Hirth, Lion & Ziegenhagen, Inka, 2015. "Balancing power and variable renewables: Three links," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1035-1051.
    19. Rubin, Ofir D. & Babcock, Bruce A., 2013. "The impact of expansion of wind power capacity and pricing methods on the efficiency of deregulated electricity markets," Energy, Elsevier, vol. 59(C), pages 676-688.
    20. Angelica, Gianfreda & Lucia, Parisio & Matteo, Pelagatti, 2017. "The RES-induced Switching Effect Across Fossil Fuels: An Analysis of the Italian Day-Ahead and Balancing Prices and Their Connected Costs," Working Papers 360, University of Milano-Bicocca, Department of Economics, revised 03 Feb 2017.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:132:y:2019:i:c:p:702-713. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.