[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v111y2017icp222-234.html
   My bibliography  Save this article

Estimating benefits and costs of policies proposed in the 13th FYP to improve energy efficiency and reduce air emissions of China's electric power sector

Author

Listed:
  • Li, Mingquan
  • Patiño-Echeverri, Dalia
Abstract
This paper assesses the benefits and costs of five policies seeking to improve the energy efficiency and sustainability of China's electric power sector in the 13th five-year plan. It also estimates for each policy, the cost per ton of coal saved and the cost per ton of CO2, SO2, NOx, PM and mercury abated. Results show that, compared with a business as usual (BAU) case, the implementation of these policies will reduce coal consumption and CO2 emissions by 9.61–13.77% and will eliminate more than half of air pollutant emissions, at an annualized cost in the range of $43.5–97.4 billion. Among the policies analyzed, the development of renewable power and the mandate for retrofits of existing coal-fired power plants (CFPPs) are the most promising for reducing energy consumption and emissions; the former has the highest potential for reducing coal usage and CO2 emissions; while the latter can contribute the most to the reduction of air pollutant emissions. The two most cost-effective policies for reducing coal consumption and air emissions are a) imposing technology standards for new CFPPs and b) mandating retrofits for existing CFPPs. In contrast, the adoption of low-sulfur coal is the costliest policy.

Suggested Citation

  • Li, Mingquan & Patiño-Echeverri, Dalia, 2017. "Estimating benefits and costs of policies proposed in the 13th FYP to improve energy efficiency and reduce air emissions of China's electric power sector," Energy Policy, Elsevier, vol. 111(C), pages 222-234.
  • Handle: RePEc:eee:enepol:v:111:y:2017:i:c:p:222-234
    DOI: 10.1016/j.enpol.2017.09.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421517305712
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2017.09.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Du, Limin & Mao, Jie & Shi, Jinchuan, 2009. "Assessing the impact of regulatory reforms on China's electricity generation industry," Energy Policy, Elsevier, vol. 37(2), pages 712-720, February.
    2. Zhang, Hui & Zhang, Bing & Bi, Jun, 2015. "More efforts, more benefits: Air pollutant control of coal-fired power plants in China," Energy, Elsevier, vol. 80(C), pages 1-9.
    3. Burtraw, Dallas & Woerman, Matt & Paul, Anthony, 2012. "Retail electricity price savings from compliance flexibility in GHG standards for stationary sources," Energy Policy, Elsevier, vol. 42(C), pages 67-77.
    4. Cherni, Judith A. & Kentish, Joanna, 2007. "Renewable energy policy and electricity market reforms in China," Energy Policy, Elsevier, vol. 35(7), pages 3616-3629, July.
    5. Yang, Jin & Chen, Bin, 2013. "Integrated evaluation of embodied energy, greenhouse gas emission and economic performance of a typical wind farm in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 559-568.
    6. Yang, Mian & Patiño-Echeverri, Dalia & Yang, Fuxia, 2012. "Wind power generation in China: Understanding the mismatch between capacity and generation," Renewable Energy, Elsevier, vol. 41(C), pages 145-151.
    7. Zhang, Ning & Kong, Fanbin & Choi, Yongrok & Zhou, P., 2014. "The effect of size-control policy on unified energy and carbon efficiency for Chinese fossil fuel power plants," Energy Policy, Elsevier, vol. 70(C), pages 193-200.
    8. Bao, Chao & Fang, Chuang-lin, 2013. "Geographical and environmental perspectives for the sustainable development of renewable energy in urbanizing China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 464-474.
    9. Chen, Zheng-Ao & Li, Qi & Liu, Lan-Cui & Zhang, Xian & Kuang, Liping & Jia, Li & Liu, Guizhen, 2015. "A large national survey of public perceptions of CCS technology in China," Applied Energy, Elsevier, vol. 158(C), pages 366-377.
    10. Chen, G.Q. & Yang, Q. & Zhao, Y.H. & Wang, Z.F., 2011. "Nonrenewable energy cost and greenhouse gas emissions of a 1.5Â MW solar power tower plant in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1961-1967, May.
    11. Kroeze, Carolien & Vlasblom, Jaklien & Gupta, Joyeeta & Boudri, Christiaan & Blok, Kornelis, 2004. "The power sector in China and India: greenhouse gas emissions reduction potential and scenarios for 1990-2020," Energy Policy, Elsevier, vol. 32(1), pages 55-76, January.
    12. Zeng, Ming & Yang, Yongqi & Wang, Lihua & Sun, Jinghui, 2016. "The power industry reform in China 2015: Policies, evaluations and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 94-110.
    13. Xu, Shaofeng & Chen, Wenying, 2006. "The reform of electricity power sector in the PR of China," Energy Policy, Elsevier, vol. 34(16), pages 2455-2465, November.
    14. Xi Lu & Michael B. McElroy & Wei Peng & Shiyang Liu & Chris P. Nielsen & Haikun Wang, 2016. "Challenges faced by China compared with the US in developing wind power," Nature Energy, Nature, vol. 1(6), pages 1-6, June.
    15. Lin, Boqiang & Li, Jianglong, 2015. "Analyzing cost of grid-connection of renewable energy development in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1373-1382.
    16. Du, Limin & Mao, Jie, 2015. "Estimating the environmental efficiency and marginal CO2 abatement cost of coal-fired power plants in China," Energy Policy, Elsevier, vol. 85(C), pages 347-356.
    17. Li, Canbing & Shi, Haiqing & Cao, Yijia & Wang, Jianhui & Kuang, Yonghong & Tan, Yi & Wei, Jing, 2015. "Comprehensive review of renewable energy curtailment and avoidance: A specific example in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1067-1079.
    18. Sun, Jian & Schreifels, Jeremy & Wang, Jun & Fu, Joshua S. & Wang, Shuxiao, 2014. "Cost estimate of multi-pollutant abatement from the power sector in the Yangtze River Delta region of China," Energy Policy, Elsevier, vol. 69(C), pages 478-488.
    19. Cai, Wenjia & Mu, Yaqian & Wang, Can & Chen, Jining, 2014. "Distributional employment impacts of renewable and new energy–A case study of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1155-1163.
    20. David G. Victor & Keigo Akimoto & Yoichi Kaya & Mitsutsune Yamaguchi & Danny Cullenward & Cameron Hepburn, 2017. "Prove Paris was more than paper promises," Nature, Nature, vol. 548(7665), pages 25-27, August.
    21. Xue, Bing & Ma, Zhixiao & Geng, Yong & Heck, Peter & Ren, Wanxia & Tobias, Mario & Maas, Achim & Jiang, Ping & Puppim de Oliveira, Jose A. & Fujita, Tsuyoshi, 2015. "A life cycle co-benefits assessment of wind power in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 338-346.
    22. Li, Li & Tan, Zhongfu & Wang, Jianhui & Xu, Jun & Cai, Chengkai & Hou, Yong, 2011. "Energy conservation and emission reduction policies for the electric power industry in China," Energy Policy, Elsevier, vol. 39(6), pages 3669-3679, June.
    23. Chen, G.Q. & Yang, Q. & Zhao, Y.H., 2011. "Renewability of wind power in China: A case study of nonrenewable energy cost and greenhouse gas emission by a plant in Guangxi," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2322-2329, June.
    24. Zhang, Shuwei & Bauer, Nico & Luderer, Gunnar & Kriegler, Elmar, 2014. "Role of technologies in energy-related CO2 mitigation in China within a climate-protection world: A scenarios analysis using REMIND," Applied Energy, Elsevier, vol. 115(C), pages 445-455.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Mingquan & Gao, Huiwen & Abdulla, Ahmed & Shan, Rui & Gao, Shuo, 2022. "Combined effects of carbon pricing and power market reform on CO2 emissions reduction in China's electricity sector," Energy, Elsevier, vol. 257(C).
    2. Zhang, Haonan & Zhang, Xingping & Yuan, Jiahai, 2020. "Transition of China's power sector consistent with Paris Agreement into 2050: Pathways and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    3. Tang, Chang & Qi, Yu & Khan, Naqib Ullah & Tang, Ruwei & Xue, Yan, 2023. "Ultra-low emission standards and corporate production performance: Evidence from Chinese thermal power companies," Energy Policy, Elsevier, vol. 173(C).
    4. Xue, Jian & Guo, Na & Zhao, Laijun & Zhu, Di & Ji, Xiaoqin, 2020. "A cooperative inter-provincial model for energy conservation based on futures trading," Energy, Elsevier, vol. 212(C).
    5. Gingerich, Daniel B. & Zhao, Yifan & Mauter, Meagan S., 2019. "Environmentally significant shifts in trace element emissions from coal plants complying with the 1990 Clean Air Act Amendments," Energy Policy, Elsevier, vol. 132(C), pages 1206-1215.
    6. Quan Cheng & Jing Yang, 2023. "Allocation and Evolution of Government Attention in China’s Electric Power Industry: An Analysis Based on Policy Text," Sustainability, MDPI, vol. 15(16), pages 1-19, August.
    7. Zhang, Ning & Zhao, Yu & Wang, Na, 2022. "Is China's energy policy effective for power plants? Evidence from the 12th Five-Year Plan energy saving targets," Energy Economics, Elsevier, vol. 112(C).
    8. Li, Mingquan & Shan, Rui & Hernandez, Mauricio & Mallampalli, Varun & Patiño-Echeverri, Dalia, 2019. "Effects of population, urbanization, household size, and income on electric appliance adoption in the Chinese residential sector towards 2050," Applied Energy, Elsevier, vol. 236(C), pages 293-306.
    9. Li, Mingquan & Shan, Rui & Virguez, Edgar & Patiño-Echeverri, Dalia & Gao, Shuo & Ma, Haichao, 2022. "Energy storage reduces costs and emissions even without large penetration of renewable energy: The case of China Southern Power Grid," Energy Policy, Elsevier, vol. 161(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Mingquan & Patiño-Echeverri, Dalia & Zhang, Junfeng (Jim), 2019. "Policies to promote energy efficiency and air emissions reductions in China's electric power generation sector during the 11th and 12th five-year plan periods: Achievements, remaining challenges, and ," Energy Policy, Elsevier, vol. 125(C), pages 429-444.
    2. Zhou, Kaile & Yang, Shanlin & Shen, Chao & Ding, Shuai & Sun, Chaoping, 2015. "Energy conservation and emission reduction of China’s electric power industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 10-19.
    3. Wu, X.D. & Ji, Xi & Li, Chaohui & Xia, X.H. & Chen, G.Q., 2019. "Water footprint of thermal power in China: Implications from the high amount of industrial water use by plant infrastructure of coal-fired generation system," Energy Policy, Elsevier, vol. 132(C), pages 452-461.
    4. Cheng, Chuntian & Chen, Fu & Li, Gang & Ristić, Bora & Mirchi, Ali & Qiyu, Tu & Madani, Kaveh, 2018. "Reform and renewables in China: The architecture of Yunnan's hydropower dominated electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 682-693.
    5. Arora, Vipin & Cai, Yiyong & Jones, Ayaka, 2016. "The national and international impacts of coal-to-gas switching in the Chinese power sector," Energy Economics, Elsevier, vol. 60(C), pages 416-426.
    6. Yashuang Feng & Lixiao Zhang, 2023. "The GHG Intensities of Wind Power Plants in China from a Life-Cycle Perspective: The Impacts of Geographical Location, Turbine Technology and Management Level," Sustainability, MDPI, vol. 15(5), pages 1-17, March.
    7. Zhao, Zhen-Yu & Zuo, Jian & Zillante, George & Wang, Xin-Wei, 2010. "Critical success factors for BOT electric power projects in China: Thermal power versus wind power," Renewable Energy, Elsevier, vol. 35(6), pages 1283-1291.
    8. Zhu, Mengye & Qi, Ye & Belis, David & Lu, Jiaqi & Kerremans, Bart, 2019. "The China wind paradox: The role of state-owned enterprises in wind power investment versus wind curtailment," Energy Policy, Elsevier, vol. 127(C), pages 200-212.
    9. Yang, Jin & Song, Dan & Wu, Feng, 2017. "Regional variations of environmental co-benefits of wind power generation in China," Applied Energy, Elsevier, vol. 206(C), pages 1267-1281.
    10. Yeongjun Yeo & Dongnyok Shim & Jeong-Dong Lee & Jörn Altmann, 2015. "Driving Forces of CO 2 Emissions in Emerging Countries: LMDI Decomposition Analysis on China and India’s Residential Sector," Sustainability, MDPI, vol. 7(12), pages 1-22, December.
    11. Tu, Qiang & Betz, Regina & Mo, Jianlei & Fan, Ying, 2019. "The profitability of onshore wind and solar PV power projects in China - A comparative study," Energy Policy, Elsevier, vol. 132(C), pages 404-417.
    12. Wu, X.D. & Xia, X.H. & Chen, G.Q. & Wu, X.F. & Chen, B., 2016. "Embodied energy analysis for coal-based power generation system-highlighting the role of indirect energy cost," Applied Energy, Elsevier, vol. 184(C), pages 936-950.
    13. Zhou, Kaile & Yang, Shanlin, 2015. "Demand side management in China: The context of China’s power industry reform," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 954-965.
    14. Li, Mingquan & Dai, Hancheng & Xie, Yang & Tao, Ye & Bregnbaek, Lars & Sandholt, Kaare, 2017. "Water conservation from power generation in China: A provincial level scenario towards 2030," Applied Energy, Elsevier, vol. 208(C), pages 580-591.
    15. Wu, X.D. & Guo, J.L. & Chen, G.Q., 2018. "The striking amount of carbon emissions by the construction stage of coal-fired power generation system in China," Energy Policy, Elsevier, vol. 117(C), pages 358-369.
    16. Cui, Qi & He, Ling & Han, Guoyi & Chen, Hao & Cao, Juanjuan, 2020. "Review on climate and water resource implications of reducing renewable power curtailment in China: A nexus perspective," Applied Energy, Elsevier, vol. 267(C).
    17. Zhao, Xiaoli & Cai, Qiong & Zhang, Sufang & Luo, Kaiyan, 2017. "The substitution of wind power for coal-fired power to realize China's CO2 emissions reduction targets in 2020 and 2030," Energy, Elsevier, vol. 120(C), pages 164-178.
    18. Hayashi, Daisuke & Huenteler, Joern & Lewis, Joanna I., 2018. "Gone with the wind: A learning curve analysis of China's wind power industry," Energy Policy, Elsevier, vol. 120(C), pages 38-51.
    19. Zhang, Yin-Fang & Gao, Ping, 2016. "Integrating environmental considerations into economic regulation of China's electricity sector," Utilities Policy, Elsevier, vol. 38(C), pages 62-71.
    20. Zhang, Ning & Zhao, Yu & Wang, Na, 2022. "Is China's energy policy effective for power plants? Evidence from the 12th Five-Year Plan energy saving targets," Energy Economics, Elsevier, vol. 112(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:111:y:2017:i:c:p:222-234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.