[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v286y2020i3p1002-1017.html
   My bibliography  Save this article

Product-closing approximation for ranking-based choice network revenue management

Author

Listed:
  • Barbier, Thibault
  • Anjos, Miguel F.
  • Cirinei, Fabien
  • Savard, Gilles
Abstract
Most recent research in network revenue management incorporates choice behavior that models the customers’ buying logic. These models are consequently more complex to solve, but they return a more robust policy that usually generates better expected revenue than an independent-demand model. Choice network revenue management has an exact dynamic programming formulation that rapidly becomes intractable. Approximations have been developed, and many of them are based on the multinomial logit demand model. However, this parametric model has the property known as the independence of irrelevant alternatives and is often replaced in practice by a nonparametric model. We propose a new approximation called the product closing program that is specifically designed for a ranking-based choice model representing a nonparametric demand. Numerical experiments show that our approach quickly returns expected revenues that are slightly better than those of other approximations, especially for large instances. Our approximation can also supply a good initial solution for other approaches.

Suggested Citation

  • Barbier, Thibault & Anjos, Miguel F. & Cirinei, Fabien & Savard, Gilles, 2020. "Product-closing approximation for ranking-based choice network revenue management," European Journal of Operational Research, Elsevier, vol. 286(3), pages 1002-1017.
  • Handle: RePEc:eee:ejores:v:286:y:2020:i:3:p:1002-1017
    DOI: 10.1016/j.ejor.2020.04.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720303957
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.04.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dan Zhang & Larry Weatherford, 2017. "Dynamic Pricing for Network Revenue Management: A New Approach and Application in the Hotel Industry," INFORMS Journal on Computing, INFORMS, vol. 29(1), pages 18-35, February.
    2. Arne K. Strauss & Kalyan Talluri, 2017. "Tractable Consideration Set Structures for Assortment Optimization and Network Revenue Management," Production and Operations Management, Production and Operations Management Society, vol. 26(7), pages 1359-1368, July.
    3. Alice Paul & Jacob Feldman & James Mario Davis, 2018. "Assortment Optimization and Pricing Under a Nonparametric Tree Choice Model," Manufacturing & Service Operations Management, INFORMS, vol. 20(3), pages 550-565, July.
    4. Srikanth Jagabathula & Paat Rusmevichientong, 2017. "Nonparametric Joint Assortment and Price Choice Model," Management Science, INFORMS, vol. 63(9), pages 3128-3145, September.
    5. Vivek F. Farias & Srikanth Jagabathula & Devavrat Shah, 2013. "A Nonparametric Approach to Modeling Choice with Limited Data," Management Science, INFORMS, vol. 59(2), pages 305-322, December.
    6. Kalyan Talluri & Garrett van Ryzin, 2004. "Revenue Management Under a General Discrete Choice Model of Consumer Behavior," Management Science, INFORMS, vol. 50(1), pages 15-33, January.
    7. Garrett van Ryzin & Gustavo Vulcano, 2015. "A Market Discovery Algorithm to Estimate a General Class of Nonparametric Choice Models," Management Science, INFORMS, vol. 61(2), pages 281-300, February.
    8. Qian Liu & Garrett van Ryzin, 2008. "On the Choice-Based Linear Programming Model for Network Revenue Management," Manufacturing & Service Operations Management, INFORMS, vol. 10(2), pages 288-310, October.
    9. Kalyan Talluri, 2014. "New Formulations for Choice Network Revenue Management," INFORMS Journal on Computing, INFORMS, vol. 26(2), pages 401-413, May.
    10. Juan José Miranda Bront & Isabel Méndez-Díaz & Gustavo Vulcano, 2009. "A Column Generation Algorithm for Choice-Based Network Revenue Management," Operations Research, INFORMS, vol. 57(3), pages 769-784, June.
    11. Garrett van Ryzin & Gustavo Vulcano, 2017. "Technical Note—An Expectation-Maximization Method to Estimate a Rank-Based Choice Model of Demand," Operations Research, INFORMS, vol. 65(2), pages 396-407, April.
    12. Morad Hosseinalifam & Gilles Savard & Patrice Marcotte, 2016. "Computing booking limits under a non-parametric demand model: A mathematical programming approach," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 15(2), pages 170-184, April.
    13. Paat Rusmevichientong & David Shmoys & Chaoxu Tong & Huseyin Topaloglu, 2014. "Assortment Optimization under the Multinomial Logit Model with Random Choice Parameters," Production and Operations Management, Production and Operations Management Society, vol. 23(11), pages 2023-2039, November.
    14. Strauss, Arne K. & Klein, Robert & Steinhardt, Claudius, 2018. "A review of choice-based revenue management: Theory and methods," European Journal of Operational Research, Elsevier, vol. 271(2), pages 375-387.
    15. Juan M. Chaneton & Gustavo Vulcano, 2011. "Computing Bid Prices for Revenue Management Under Customer Choice Behavior," Manufacturing & Service Operations Management, INFORMS, vol. 13(4), pages 452-470, October.
    16. Ward Hanson & Kipp Martin, 1996. "Optimizing Multinomial Logit Profit Functions," Management Science, INFORMS, vol. 42(7), pages 992-1003, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Strauss, Arne K. & Klein, Robert & Steinhardt, Claudius, 2018. "A review of choice-based revenue management: Theory and methods," European Journal of Operational Research, Elsevier, vol. 271(2), pages 375-387.
    2. Sumit Kunnumkal & Kalyan Talluri, 2019. "Choice Network Revenue Management Based on New Tractable Approximations," Transportation Science, INFORMS, vol. 53(6), pages 1591-1608, November.
    3. Guillermo Gallego & Huseyin Topaloglu, 2014. "Constrained Assortment Optimization for the Nested Logit Model," Management Science, INFORMS, vol. 60(10), pages 2583-2601, October.
    4. Guang Li & Paat Rusmevichientong & Huseyin Topaloglu, 2015. "The d -Level Nested Logit Model: Assortment and Price Optimization Problems," Operations Research, INFORMS, vol. 63(2), pages 325-342, April.
    5. Meng Qi & Ho‐Yin Mak & Zuo‐Jun Max Shen, 2020. "Data‐driven research in retail operations—A review," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(8), pages 595-616, December.
    6. Thibault Barbier & Miguel Anjos & Fabien Cirinei & Gilles Savard, 2019. "Fluid arrivals simulation for choice network revenue management," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 18(2), pages 164-180, April.
    7. Qi Feng & J. George Shanthikumar, 2022. "Developing operations management data analytics," Production and Operations Management, Production and Operations Management Society, vol. 31(12), pages 4544-4557, December.
    8. Flores, Alvaro & Berbeglia, Gerardo & Van Hentenryck, Pascal, 2019. "Assortment optimization under the Sequential Multinomial Logit Model," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1052-1064.
    9. Kameng Nip & Zhenbo Wang & Zizhuo Wang, 2021. "Assortment Optimization under a Single Transition Choice Model," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 2122-2142, July.
    10. Jacob Feldman & Alice Paul & Huseyin Topaloglu, 2019. "Technical Note—Assortment Optimization with Small Consideration Sets," Operations Research, INFORMS, vol. 67(5), pages 1283-1299, September.
    11. James M. Davis & Guillermo Gallego & Huseyin Topaloglu, 2014. "Assortment Optimization Under Variants of the Nested Logit Model," Operations Research, INFORMS, vol. 62(2), pages 250-273, April.
    12. Alice Paul & Jacob Feldman & James Mario Davis, 2018. "Assortment Optimization and Pricing Under a Nonparametric Tree Choice Model," Manufacturing & Service Operations Management, INFORMS, vol. 20(3), pages 550-565, July.
    13. Dimitris Bertsimas & Velibor V. Mišić, 2019. "Exact First-Choice Product Line Optimization," Operations Research, INFORMS, vol. 67(3), pages 651-670, May.
    14. Qi Feng & J. George Shanthikumar & Mengying Xue, 2022. "Consumer Choice Models and Estimation: A Review and Extension," Production and Operations Management, Production and Operations Management Society, vol. 31(2), pages 847-867, February.
    15. Jacob B. Feldman & Huseyin Topaloglu, 2017. "Revenue Management Under the Markov Chain Choice Model," Operations Research, INFORMS, vol. 65(5), pages 1322-1342, October.
    16. C. I. Chiang, 2023. "Availability control under online reviews in hospitality," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 22(5), pages 385-398, October.
    17. Yuhang Ma & Paat Rusmevichientong & Mika Sumida & Huseyin Topaloglu, 2020. "An Approximation Algorithm for Network Revenue Management Under Nonstationary Arrivals," Operations Research, INFORMS, vol. 68(3), pages 834-855, May.
    18. Mika Sumida & Guillermo Gallego & Paat Rusmevichientong & Huseyin Topaloglu & James Davis, 2021. "Revenue-Utility Tradeoff in Assortment Optimization Under the Multinomial Logit Model with Totally Unimodular Constraints," Management Science, INFORMS, vol. 67(5), pages 2845-2869, May.
    19. Paat Rusmevichientong & Huseyin Topaloglu, 2012. "Robust Assortment Optimization in Revenue Management Under the Multinomial Logit Choice Model," Operations Research, INFORMS, vol. 60(4), pages 865-882, August.
    20. W. Zachary Rayfield & Paat Rusmevichientong & Huseyin Topaloglu, 2015. "Approximation Methods for Pricing Problems Under the Nested Logit Model with Price Bounds," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 335-357, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:286:y:2020:i:3:p:1002-1017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.