[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v255y2016i2p397-410.html
   My bibliography  Save this article

Time is money: Costing the impact of duration misperception in market prices

Author

Listed:
  • Ma, Tiejun
  • Tang, Leilei
  • McGroarty, Frank
  • Sung, Ming-Chien
  • Johnson, Johnnie E. V
Abstract
We explore whether, and to what extent, traders in a real world financial market, where participants’ judgements are reportedly well calibrated, are subject to duration misperception. To achieve this, we examine duration misperception in the horserace betting market. We develop a two-stage algorithm to predict horses’ winning probabilities that account for a duration-related factor that is known to affect horses’ winning prospects. The algorithm adapts survival analysis and combines it with the conditional logit model. Using a dataset of 4736 horseraces and the lifetime career statistics of the 53,295 horses running in these races, we demonstrate that prices fail to discount fully information related to duration since a horse's last win. We show that this failure is extremely costly, since a betting strategy based on the predictions arising from the model shows substantial profits (932.5 percent and 16.27 percent, with and without reinvestment of winnings, respectively). We discuss the important implications of duration neglect in the wider economy.

Suggested Citation

  • Ma, Tiejun & Tang, Leilei & McGroarty, Frank & Sung, Ming-Chien & Johnson, Johnnie E. V, 2016. "Time is money: Costing the impact of duration misperception in market prices," European Journal of Operational Research, Elsevier, vol. 255(2), pages 397-410.
  • Handle: RePEc:eee:ejores:v:255:y:2016:i:2:p:397-410
    DOI: 10.1016/j.ejor.2016.04.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221716302818
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2016.04.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Florez-Lopez, Raquel, 2007. "Modelling of insurers' rating determinants. An application of machine learning techniques and statistical models," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1488-1512, December.
    2. Meyer, Bruce D, 1990. "Unemployment Insurance and Unemployment Spells," Econometrica, Econometric Society, vol. 58(4), pages 757-782, July.
    3. Erik Snowberg & Justin Wolfers, 2010. "Explaining the Favorite-Long Shot Bias: Is it Risk-Love or Misperceptions?," Journal of Political Economy, University of Chicago Press, vol. 118(4), pages 723-746, August.
    4. Bloemen, Hans & Kalwij, Adriaan S., 2001. "Female labor market transitions and the timing of births: a simultaneous analysis of the effects of schooling," Labour Economics, Elsevier, vol. 8(5), pages 593-620, December.
    5. D. J. Johnstone, 2011. "Economic Interpretation of Probabilities Estimated by Maximum Likelihood or Score," Management Science, INFORMS, vol. 57(2), pages 308-314, February.
    6. Ongena, Steven & Smith, David C., 2001. "The duration of bank relationships," Journal of Financial Economics, Elsevier, vol. 61(3), pages 449-475, September.
    7. Goodwin, Paul & Önkal, Dilek & Thomson, Mary, 2010. "Do forecasts expressed as prediction intervals improve production planning decisions?," European Journal of Operational Research, Elsevier, vol. 205(1), pages 195-201, August.
    8. Erling Moxnes, 1998. "Not Only the Tragedy of the Commons: Misperceptions of Bioeconomics," Management Science, INFORMS, vol. 44(9), pages 1234-1248, September.
    9. Johnson, Johnnie E. V. & Bruce, Alistair C., 2001. "Calibration of Subjective Probability Judgments in a Naturalistic Setting," Organizational Behavior and Human Decision Processes, Elsevier, vol. 85(2), pages 265-290, July.
    10. Lunde, Asger & Timmermann, Allan & Blake, David, 1999. "The hazards of mutual fund underperformance: A Cox regression analysis," Journal of Empirical Finance, Elsevier, vol. 6(2), pages 121-152, April.
    11. Lessmann, Stefan & Sung, Ming-Chien & Johnson, Johnnie E.V., 2010. "Alternative methods of predicting competitive events: An application in horserace betting markets," International Journal of Forecasting, Elsevier, vol. 26(3), pages 518-536, July.
    12. Schnytzer, Adi & Shilony, Yuval, 1995. "Inside Information in a Betting Market," Economic Journal, Royal Economic Society, vol. 105(431), pages 963-971, July.
    13. Johnnie E. V. Johnson & Owen Jones & Leilei Tang, 2006. "Exploring Decision Makers' Use of Price Information in a Speculative Market," Management Science, INFORMS, vol. 52(6), pages 897-908, June.
    14. Raymond D. Sauer, 1998. "The Economics of Wagering Markets," Journal of Economic Literature, American Economic Association, vol. 36(4), pages 2021-2064, December.
    15. Chen, Zhiyuan & Liang, Xiaoying & Xie, Lei, 2016. "Inter-temporal price discrimination and satiety-driven repeat purchases," European Journal of Operational Research, Elsevier, vol. 251(1), pages 225-236.
    16. Goodwin, Paul, 2005. "Providing support for decisions based on time series information under conditions of asymmetric loss," European Journal of Operational Research, Elsevier, vol. 163(2), pages 388-402, June.
    17. Hwang, Joon Ho & Kim, Min-Su, 2015. "Misunderstanding of the binomial distribution, market inefficiency, and learning behavior: Evidence from an exotic sports betting market," European Journal of Operational Research, Elsevier, vol. 243(1), pages 333-344.
    18. repec:bla:econom:v:52:y:1985:i:27:p:295-304 is not listed on IDEAS
    19. John D. Sterman, 1989. "Modeling Managerial Behavior: Misperceptions of Feedback in a Dynamic Decision Making Experiment," Management Science, INFORMS, vol. 35(3), pages 321-339, March.
    20. Jensen, Michael C., 1978. "Some anomalous evidence regarding market efficiency," Journal of Financial Economics, Elsevier, vol. 6(2-3), pages 95-101.
    21. Williams, Leighton Vaughan & Paton, David, 1997. "Why Is There a Favourite-Longshot Bias in British Racetrack Betting Markets?," Economic Journal, Royal Economic Society, vol. 107(440), pages 150-158, January.
    22. Jones, Stewart & Johnstone, David & Wilson, Roy, 2015. "An empirical evaluation of the performance of binary classifiers in the prediction of credit ratings changes," Journal of Banking & Finance, Elsevier, vol. 56(C), pages 72-85.
    23. repec:bla:econom:v:69:y:2002:i:274:p:327-38 is not listed on IDEAS
    24. Fama, Eugene F, 1991. "Efficient Capital Markets: II," Journal of Finance, American Finance Association, vol. 46(5), pages 1575-1617, December.
    25. Scott Shane & Maw-Der Foo, 1999. "New Firm Survival: Institutional Explanations for New Franchisor Mortality," Management Science, INFORMS, vol. 45(2), pages 142-159, February.
    26. Ruth N. Bolton & Randall G. Chapman, 2008. "Searching For Positive Returns At The Track: A Multinomial Logit Model For Handicapping Horse Races," World Scientific Book Chapters, in: Donald B Hausch & Victor SY Lo & William T Ziemba (ed.), Efficiency Of Racetrack Betting Markets, chapter 17, pages 151-171, World Scientific Publishing Co. Pte. Ltd..
    27. Ali, Mukhtar M, 1977. "Probability and Utility Estimates for Racetrack Bettors," Journal of Political Economy, University of Chicago Press, vol. 85(4), pages 803-815, August.
    28. David Edelman, 2007. "Adapting support vector machine methods for horserace odds prediction," Annals of Operations Research, Springer, vol. 151(1), pages 325-336, April.
    29. Dolton, Peter J & van der Klaauw, Wilbert, 1995. "Leaving Teaching in the UK: A Duration Analysis," Economic Journal, Royal Economic Society, vol. 105(429), pages 431-444, March.
    30. Ken Smith & Cathleen Zick, 1994. "Linked lives, dependent demise? Survival analysis of husbands and wives," Demography, Springer;Population Association of America (PAA), vol. 31(1), pages 81-93, February.
    31. Maria Stepanova & Lyn Thomas, 2002. "Survival Analysis Methods for Personal Loan Data," Operations Research, INFORMS, vol. 50(2), pages 277-289, April.
    32. Vaughan Williams, Leighton, 1999. "Information Efficiency in Betting Markets: A Survey," Bulletin of Economic Research, Wiley Blackwell, vol. 51(1), pages 1-30, January.
    33. Lessmann, Stefan & Sung, Ming-Chien & Johnson, Johnnie E.V. & Ma, Tiejun, 2012. "A new methodology for generating and combining statistical forecasting models to enhance competitive event prediction," European Journal of Operational Research, Elsevier, vol. 218(1), pages 163-174.
    34. Adi Schnytzer & Yuval Shilony, 2002. "On the timing of inside trades in a betting market," The European Journal of Finance, Taylor & Francis Journals, vol. 8(2), pages 176-186, June.
    35. Lessmann, Stefan & Sung, Ming-Chien & Johnson, Johnnie E.V., 2009. "Identifying winners of competitive events: A SVM-based classification model for horserace prediction," European Journal of Operational Research, Elsevier, vol. 196(2), pages 569-577, July.
    36. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    37. Brian R. Canfield & Bruce C. Fauman & William T. Ziemba, 1987. "Efficient Market Adjustment of Odds Prices to Reflect Track Biases," Management Science, INFORMS, vol. 33(11), pages 1428-1439, November.
    38. Baesens, Bart & Viaene, Stijn & Van den Poel, Dirk & Vanthienen, Jan & Dedene, Guido, 2002. "Bayesian neural network learning for repeat purchase modelling in direct marketing," European Journal of Operational Research, Elsevier, vol. 138(1), pages 191-211, April.
    39. Steven D. Levitt, 2004. "Why are gambling markets organised so differently from financial markets?," Economic Journal, Royal Economic Society, vol. 114(495), pages 223-246, April.
    40. Sterman, John. & Diehl, Ernst-Walter., 1993. "Effects of feedback complexity on dynamic decision making," Working papers 3608-93., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    41. Flores, Ramón & Forrest, David & Tena, J.D., 2012. "Decision taking under pressure: Evidence on football manager dismissals in Argentina and their consequences," European Journal of Operational Research, Elsevier, vol. 222(3), pages 653-662.
    42. Wagner A. Kamakura & Bruce S. Kossar & Michel Wedel, 2004. "Identifying Innovators for the Cross-Selling of New Products," Management Science, INFORMS, vol. 50(8), pages 1120-1133, August.
    43. Sterman, John D., 1989. "Misperceptions of feedback in dynamic decision making," Organizational Behavior and Human Decision Processes, Elsevier, vol. 43(3), pages 301-335, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Restocchi, Valerio & McGroarty, Frank & Gerding, Enrico & Johnson, Johnnie E.V., 2018. "It takes all sorts: A heterogeneous agent explanation for prediction market mispricing," European Journal of Operational Research, Elsevier, vol. 270(2), pages 556-569.
    2. Ma, T. & Fraser-Mackenzie, P.A.F. & Sung, M. & Kansara, A.P. & Johnson, J.E.V., 2022. "Are the least successful traders those most likely to exit the market? A survival analysis contribution to the efficient market debate," European Journal of Operational Research, Elsevier, vol. 299(1), pages 330-345.
    3. Green, Lawrence & Sung, Ming-Chien & Ma, Tiejun & Johnson, Johnnie E. V., 2019. "To what extent can new web-based technology improve forecasts? Assessing the economic value of information derived from Virtual Globes and its rate of diffusion in a financial market," European Journal of Operational Research, Elsevier, vol. 278(1), pages 226-239.
    4. Peter A. F. Fraser‐Mackenzie & Tiejun Ma & Ming‐Chien Sung & Johnnie E. V. Johnson, 2019. "Let's Call it Quits: Break‐Even Effects in the Decision to Stop Taking Risks," Risk Analysis, John Wiley & Sons, vol. 39(7), pages 1560-1581, July.
    5. Brown, Alasdair & Reade, J. James, 2019. "The wisdom of amateur crowds: Evidence from an online community of sports tipsters," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1073-1081.
    6. Costa Sperb, L.F. & Sung, M.-C. & Ma, T. & Johnson, J.E.V., 2022. "Turning the heat on financial decisions: Examining the role temperature plays in the incidence of bias in a time-limited financial market," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1142-1157.
    7. Sung, Ming-Chien & McDonald, David C.J. & Johnson, Johnnie E.V. & Tai, Chung-Ching & Cheah, Eng-Tuck, 2019. "Improving prediction market forecasts by detecting and correcting possible over-reaction to price movements," European Journal of Operational Research, Elsevier, vol. 272(1), pages 389-405.
    8. Yu, Dian & Gao, Jianjun & Wang, Tongyao, 2022. "Betting market equilibrium with heterogeneous beliefs: A prospect theory-based model," European Journal of Operational Research, Elsevier, vol. 298(1), pages 137-151.
    9. Claudiu Herteliu & Ionel Jianu & Iulia Jianu & Vasile Catalin Bobb & Gurjeet Dhesi & Sebastian Ion Ceptureanu & Eduard Gabriel Ceptureanu & Marcel Ausloos, 2021. "Money’s importance from the religious perspective," Annals of Operations Research, Springer, vol. 299(1), pages 375-399, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sung, Ming-Chien & McDonald, David C.J. & Johnson, Johnnie E.V. & Tai, Chung-Ching & Cheah, Eng-Tuck, 2019. "Improving prediction market forecasts by detecting and correcting possible over-reaction to price movements," European Journal of Operational Research, Elsevier, vol. 272(1), pages 389-405.
    2. S Lessmann & M-C Sung & J E V Johnson, 2011. "Towards a methodology for measuring the true degree of efficiency in a speculative market," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(12), pages 2120-2132, December.
    3. Green, Lawrence & Sung, Ming-Chien & Ma, Tiejun & Johnson, Johnnie E. V., 2019. "To what extent can new web-based technology improve forecasts? Assessing the economic value of information derived from Virtual Globes and its rate of diffusion in a financial market," European Journal of Operational Research, Elsevier, vol. 278(1), pages 226-239.
    4. Ziemba, William, 2020. "Parimutuel betting markets: racetracks and lotteries revisited," LSE Research Online Documents on Economics 118873, London School of Economics and Political Science, LSE Library.
    5. M. Sung & J. E. V. Johnson, 2010. "Revealing Weak‐Form Inefficiency in a Market for State Contingent Claims: The Importance of Market Ecology, Modelling Procedures and Investment Strategies," Economica, London School of Economics and Political Science, vol. 77(305), pages 128-147, January.
    6. Lessmann, Stefan & Sung, Ming-Chien & Johnson, Johnnie E.V., 2009. "Identifying winners of competitive events: A SVM-based classification model for horserace prediction," European Journal of Operational Research, Elsevier, vol. 196(2), pages 569-577, July.
    7. Lessmann, Stefan & Sung, Ming-Chien & Johnson, Johnnie E.V. & Ma, Tiejun, 2012. "A new methodology for generating and combining statistical forecasting models to enhance competitive event prediction," European Journal of Operational Research, Elsevier, vol. 218(1), pages 163-174.
    8. Rebeggiani, Luca & Gross, Johannes, 2018. "Chance or Ability? The Efficiency of the Football Betting Market Revisited," VfS Annual Conference 2018 (Freiburg, Breisgau): Digital Economy 181563, Verein für Socialpolitik / German Economic Association.
    9. Les Coleman, 2007. "Just How Serious is Insider Trading? An Evaluation using Thoroughbred Wagering Markets," Journal of Gambling Business and Economics, University of Buckingham Press, vol. 1(1), pages 31-55, February.
    10. Costa Sperb, L.F. & Sung, M.-C. & Ma, T. & Johnson, J.E.V., 2022. "Turning the heat on financial decisions: Examining the role temperature plays in the incidence of bias in a time-limited financial market," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1142-1157.
    11. Martin Kukuk & Stefan Winter, 2008. "An Alternative Explanation of the Favorite-Longshot Bias," Journal of Gambling Business and Economics, University of Buckingham Press, vol. 2(2), pages 79-96, September.
    12. Erik Snowberg & Justin Wolfers, 2010. "Explaining the Favorite-Long Shot Bias: Is it Risk-Love or Misperceptions?," Journal of Political Economy, University of Chicago Press, vol. 118(4), pages 723-746, August.
    13. Jinook Jeong & Jee Young Kim & Yoon Jae Ro, 2019. "On the efficiency of racetrack betting market: a new test for the favourite-longshot bias," Applied Economics, Taylor & Francis Journals, vol. 51(54), pages 5817-5828, November.
    14. Stefan Winter & Martin Kukuk, 2008. "Do horses like vodka and sponging? - On market manipulation and the favourite-longshot bias," Applied Economics, Taylor & Francis Journals, vol. 40(1), pages 75-87.
    15. Restocchi, Valerio & McGroarty, Frank & Gerding, Enrico & Johnson, Johnnie E.V., 2018. "It takes all sorts: A heterogeneous agent explanation for prediction market mispricing," European Journal of Operational Research, Elsevier, vol. 270(2), pages 556-569.
    16. Philip W. S. Newall & Dominic Cortis, 2021. "Are Sports Bettors Biased toward Longshots, Favorites, or Both? A Literature Review," Risks, MDPI, vol. 9(1), pages 1-9, January.
    17. Alistair C. Bruce & Johnnie E. V. Johnson & John D. Peirson & Jiejun Yu, 2009. "An Examination of the Determinants of Biased Behaviour in a Market for State Contingent Claims," Economica, London School of Economics and Political Science, vol. 76(302), pages 282-303, April.
    18. Lessmann, Stefan & Sung, Ming-Chien & Johnson, Johnnie E.V., 2010. "Alternative methods of predicting competitive events: An application in horserace betting markets," International Journal of Forecasting, Elsevier, vol. 26(3), pages 518-536, July.
    19. Ma, T. & Fraser-Mackenzie, P.A.F. & Sung, M. & Kansara, A.P. & Johnson, J.E.V., 2022. "Are the least successful traders those most likely to exit the market? A survival analysis contribution to the efficient market debate," European Journal of Operational Research, Elsevier, vol. 299(1), pages 330-345.
    20. Raphael Flepp & Stephan Nüesch & Egon Franck, 2013. "Liquidity, Market Efficiency and the Influence of Noise Traders: Quasi-Experimental Evidence from the Betting Industry," Working Papers 341, University of Zurich, Department of Business Administration (IBW).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:255:y:2016:i:2:p:397-410. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.