[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v230y2013i1p88-96.html
   My bibliography  Save this article

Testing over-representation of observations in subsets of a DEA technology

Author

Listed:
  • Asmild, Mette
  • Hougaard, Jens Leth
  • Olesen, Ole B.
Abstract
This paper proposes a test for whether data are over-represented in a given production zone, i.e. a subset of a production possibility set which has been estimated using the non-parametric Data Envelopment Analysis (DEA) approach. A binomial test is used that relates the number of observations inside such a zone to a discrete probability weighted relative volume of that zone. A Monte Carlo simulation illustrates the performance of the proposed test statistic and provides good estimation of both facet probabilities and the assumed common inefficiency distribution in a three dimensional input space. Potential applications include tests for whether benchmark units dominate more (or less) observations than expected.

Suggested Citation

  • Asmild, Mette & Hougaard, Jens Leth & Olesen, Ole B., 2013. "Testing over-representation of observations in subsets of a DEA technology," European Journal of Operational Research, Elsevier, vol. 230(1), pages 88-96.
  • Handle: RePEc:eee:ejores:v:230:y:2013:i:1:p:88-96
    DOI: 10.1016/j.ejor.2013.03.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221713002713
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2013.03.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Leopold Simar & Paul Wilson, 2000. "A general methodology for bootstrapping in non-parametric frontier models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(6), pages 779-802.
    2. Léopold Simar & Paul Wilson, 2000. "Statistical Inference in Nonparametric Frontier Models: The State of the Art," Journal of Productivity Analysis, Springer, vol. 13(1), pages 49-78, January.
    3. Wheelock, David C & Wilson, Paul W, 1999. "Technical Progress, Inefficiency, and Productivity Change in U.S. Banking, 1984-1993," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 31(2), pages 212-234, May.
    4. J. Hartigan, 1985. "Statistical theory in clustering," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 63-76, December.
    5. Peter Bogetoft & Jens Hougaard, 2003. "Rational Inefficiencies," Journal of Productivity Analysis, Springer, vol. 20(3), pages 243-271, November.
    6. Léopold Simar & Paul W. Wilson, 1998. "Sensitivity Analysis of Efficiency Scores: How to Bootstrap in Nonparametric Frontier Models," Management Science, INFORMS, vol. 44(1), pages 49-61, January.
    7. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    8. Nam Anh Tran & Gerald Shively & Paul Preckel, 2010. "A new method for detecting outliers in Data Envelopment Analysis," Applied Economics Letters, Taylor & Francis Journals, vol. 17(4), pages 313-316.
    9. Ole Olesen & N. Petersen, 2003. "Identification and Use of Efficient Faces and Facets in DEA," Journal of Productivity Analysis, Springer, vol. 20(3), pages 323-360, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Franz R. Hahn, 2007. "Determinants of Bank Efficiency in Europe. Assessing Bank Performance Across Markets," WIFO Studies, WIFO, number 31499.
    2. Nadia M. Guerrero & Juan Aparicio & Daniel Valero-Carreras, 2022. "Combining Data Envelopment Analysis and Machine Learning," Mathematics, MDPI, vol. 10(6), pages 1-22, March.
    3. Esteve, Miriam & Aparicio, Juan & Rodriguez-Sala, Jesus J. & Zhu, Joe, 2023. "Random Forests and the measurement of super-efficiency in the context of Free Disposal Hull," European Journal of Operational Research, Elsevier, vol. 304(2), pages 729-744.
    4. Boutheina Bannour & Asma Sghaier & Mohammad Nurunnabi, 2020. "How to Choose a Nonparametric Frontier Model? Technical Efficiency of Turkish Banks Assessing Global," Global Business Review, International Management Institute, vol. 21(2), pages 348-364, April.
    5. Halkos, George & Tzeremes, Nickolaos, 2011. "A non-parametric analysis of the efficiency of the top European football clubs," MPRA Paper 31173, University Library of Munich, Germany.
    6. George Halkos & Nickolaos Tzeremes, 2010. "The effect of foreign ownership on SMEs performance: An efficiency analysis perspective," Journal of Productivity Analysis, Springer, vol. 34(2), pages 167-180, October.
    7. Matthews, Kent & Guo, Jianguang & Zhang, Nina, 2007. "Rational Inefficiency and non-performing loans in Chinese Banking: A non-parametric Bootstrapping Approach," Cardiff Economics Working Papers E2007/5, Cardiff University, Cardiff Business School, Economics Section.
    8. Luis R. Murillo‐Zamorano, 2004. "Economic Efficiency and Frontier Techniques," Journal of Economic Surveys, Wiley Blackwell, vol. 18(1), pages 33-77, February.
    9. Halkos, George & Tzeremes, Nickolaos, 2010. "Measuring the effect of virtual mergers on banks’ efficiency levels:A non parametric analysis," MPRA Paper 23696, University Library of Munich, Germany.
    10. Gounopoulos, Dimitrios & Kallias, Konstantinos & Newton, David & Tzeremes, Nickolaos, 2016. "Political connections and IPO underpricing: An efficiency problem," MPRA Paper 69427, University Library of Munich, Germany.
    11. Halkos, George & Tzeremes, Nickolaos, 2011. "Does the Kyoto Protocol Agreement matters? An environmental efficiency analysis," MPRA Paper 30652, University Library of Munich, Germany.
    12. Hung, Shiu-Wan & Lu, Wen-Min & Wang, Tung-Pao, 2010. "Benchmarking the operating efficiency of Asia container ports," European Journal of Operational Research, Elsevier, vol. 203(3), pages 706-713, June.
    13. George Emm Halkos & Nickolaos G. Tzeremes, 2011. "Measuring economic journals’ citation efficiency: a data envelopment analysis approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(3), pages 979-1001, September.
    14. Halkos, George & Tzeremes, Nickolaos, 2011. "Population density and regional welfare efficiency," MPRA Paper 30097, University Library of Munich, Germany.
    15. George E. Halkos & Nickolaos G. Tzeremes, 2015. "Measuring Seaports' Productivity: A Malmquist Productivity Index Decomposition Approach," Journal of Transport Economics and Policy, University of Bath, vol. 49(2), pages 355-376, April.
    16. Pontus Mattsson & Jonas Månsson & Christian Andersson & Fredrik Bonander, 2018. "A bootstrapped Malmquist index applied to Swedish district courts," European Journal of Law and Economics, Springer, vol. 46(1), pages 109-139, August.
    17. Halkos, George & Tzeremes, Nickolaos, 2008. "Measuring regional public health provision," MPRA Paper 23762, University Library of Munich, Germany.
    18. José Lorenzo & Isabel Sánchez, 2007. "Efficiency evaluation in municipal services: an application to the street lighting service in Spain," Journal of Productivity Analysis, Springer, vol. 27(3), pages 149-162, June.
    19. Neves Bezerra de Melo, Felipe Luiz & Sampaio, Raquel Menezes Bezerra & Sampaio, Luciano Menezes Bezerra, 2018. "Efficiency, productivity gains, and the size of Brazilian supermarkets," International Journal of Production Economics, Elsevier, vol. 197(C), pages 99-111.
    20. Halkos, George & Tzeremes, Nickolaos, 2009. "Exploring the effect of countries’ economic prosperity on their biodiversity performance," MPRA Paper 32102, University Library of Munich, Germany.

    More about this item

    Keywords

    Data Envelopment Analysis (DEA); Over-representation; Data density; Binomial test; Benchmarks;
    All these keywords.

    JEL classification:

    • C00 - Mathematical and Quantitative Methods - - General - - - General
    • C40 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - General
    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General
    • C80 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:230:y:2013:i:1:p:88-96. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.