[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v216y2012i2p301-311.html
   My bibliography  Save this article

Alternative supply chain production–sales policies for new product diffusion: An agent-based modeling and simulation approach

Author

Listed:
  • Amini, Mehdi
  • Wakolbinger, Tina
  • Racer, Michael
  • Nejad, Mohammad G.
Abstract
Applying agent-based modeling and simulation (ABMS) methodology, this paper analyzes the impact of alternative production–sales policies on the diffusion of a new generic product and the generated NPV of profit. The key features of the ABMS model, that captures the marketplace as a complex adaptive system, are: (i) supply chain capacity is constrained; (ii) consumers’ new product adoption decisions are influenced by marketing activities as well as positive and negative word-of-mouth (WOM) between consumers; (iii) interactions among consumers taking place in the context of their social network are captured at the individual level; and (iv) the new product adoption process is adaptive. Conducting over 1 million simulation experiments, we determined the “best” production–sales policies under various parameter combinations based on the NPV of profit generated over the diffusion process. The key findings are as follows: (1) on average, the build-up policy with delayed marketing is the preferred policy in the case of only positive WOM as well as the case of positive and negative WOM. This policy provides the highest expected NPV of profit on average and it also performs very smoothly with respect to changes in build-up periods. (2) It is critical to consider the significant impact of negative word-of-mouth in choosing production–sales policies. Neglecting the effect of negative word-of-mouth can lead to poor policy recommendations, incorrect conclusions concerning the impact of operational parameters on the policy choice, and suboptimal choice of build-up periods.

Suggested Citation

  • Amini, Mehdi & Wakolbinger, Tina & Racer, Michael & Nejad, Mohammad G., 2012. "Alternative supply chain production–sales policies for new product diffusion: An agent-based modeling and simulation approach," European Journal of Operational Research, Elsevier, vol. 216(2), pages 301-311.
  • Handle: RePEc:eee:ejores:v:216:y:2012:i:2:p:301-311
    DOI: 10.1016/j.ejor.2011.07.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221711006722
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2011.07.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tal Garber & Jacob Goldenberg & Barak Libai & Eitan Muller, 2004. "From Density to Destiny: Using Spatial Dimension of Sales Data for Early Prediction of New Product Success," Marketing Science, INFORMS, vol. 23(3), pages 419-428, August.
    2. Bunn, Derek W. & Oliveira, Fernando S., 2007. "Agent-based analysis of technological diversification and specialization in electricity markets," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1265-1278, September.
    3. Yan, Hong-Sen & Ma, Kai-Ping, 2011. "Competitive diffusion process of repurchased products in knowledgeable manufacturing," European Journal of Operational Research, Elsevier, vol. 208(3), pages 243-252, February.
    4. Hermann Simon & Karl-Heinz Sebastian, 1987. "Diffusion and Advertising: The German Telephone Campaign," Management Science, INFORMS, vol. 33(4), pages 451-466, April.
    5. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    6. Sunil Kumar & Jayashankar M. Swaminathan, 2003. "Diffusion of Innovations Under Supply Constraints," Operations Research, INFORMS, vol. 51(6), pages 866-879, December.
    7. Kamrad, Bardia & Lele, Shreevardhan S. & Siddique, Akhtar & Thomas, Robert J., 2005. "Innovation diffusion uncertainty, advertising and pricing policies," European Journal of Operational Research, Elsevier, vol. 164(3), pages 829-850, August.
    8. John Hauser & Gerard J. Tellis & Abbie Griffin, 2006. "Research on Innovation: A Review and Agenda for," Marketing Science, INFORMS, vol. 25(6), pages 687-717, 11-12.
    9. Christophe Van den Bulte & Yogesh V. Joshi, 2007. "New Product Diffusion with Influentials and Imitators," Marketing Science, INFORMS, vol. 26(3), pages 400-421, 05-06.
    10. Hazhir Rahmandad & John Sterman, 2008. "Heterogeneity and Network Structure in the Dynamics of Diffusion: Comparing Agent-Based and Differential Equation Models," Management Science, INFORMS, vol. 54(5), pages 998-1014, May.
    11. Mesak, Hani I. & Bari, Abdullahel & Babin, Barry J. & Birou, Laura M. & Jurkus, Anthony, 2011. "Optimum advertising policy over time for subscriber service innovations in the presence of service cost learning and customers' disadoption," European Journal of Operational Research, Elsevier, vol. 211(3), pages 642-649, June.
    12. Dipak Jain & Vijay Mahajan & Eitan Muller, 1991. "Innovation Diffusion in the Presence of Supply Restrictions," Marketing Science, INFORMS, vol. 10(1), pages 83-90.
    13. Mizerski, Richard W, 1982. "An Attribution Explanation of the Disproportionate Influence of Unfavorable Information," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 9(3), pages 301-310, December.
    14. Sanjeev Swami & Pankaj Khairnar, 2006. "Optimal normative policies for marketing of products with limited availability," Annals of Operations Research, Springer, vol. 143(1), pages 107-121, March.
    15. Teck-Hua Ho & Sergei Savin & Christian Terwiesch, 2002. "Managing Demand and Sales Dynamics in New Product Diffusion Under Supply Constraint," Management Science, INFORMS, vol. 48(2), pages 187-206, February.
    16. Kamath, Narasimha B. & Roy, Rahul, 2007. "Capacity augmentation of a supply chain for a short lifecycle product: A system dynamics framework," European Journal of Operational Research, Elsevier, vol. 179(2), pages 334-351, June.
    17. Jeffrey S. Stonebraker & Donald L. Keefer, 2009. "OR Practice---Modeling Potential Demand for Supply-Constrained Drugs: A New Hemophilia Drug at Bayer Biological Products," Operations Research, INFORMS, vol. 57(1), pages 19-31, February.
    18. Ma, Tieju & Nakamori, Yoshiteru, 2005. "Agent-based modeling on technological innovation as an evolutionary process," European Journal of Operational Research, Elsevier, vol. 166(3), pages 741-755, November.
    19. Frank M. Bass, 2004. "Comments on "A New Product Growth for Model Consumer Durables The Bass Model"," Management Science, INFORMS, vol. 50(12_supple), pages 1833-1840, December.
    20. Mauro Bampo & Michael T. Ewing & Dineli R. Mather & David Stewart & Mark Wallace, 2008. "The Effects of the Social Structure of Digital Networks on Viral Marketing Performance," Information Systems Research, INFORMS, vol. 19(3), pages 273-290, September.
    21. John H. Miller & Scott E. Page, 2007. "Complexity in Social Worlds, from Complex Adaptive Systems: An Introduction to Computational Models of Social Life," Introductory Chapters, in: Complex Adaptive Systems: An Introduction to Computational Models of Social Life, Princeton University Press.
    22. Emmanouilides, Christos J. & Davies, Richard B., 2007. "Modelling and estimation of social interaction effects in new product diffusion," European Journal of Operational Research, Elsevier, vol. 177(2), pages 1253-1274, March.
    23. Duncan J. Watts & Peter Sheridan Dodds, 2007. "Influentials, Networks, and Public Opinion Formation," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 34(4), pages 441-458, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peres, Renana & Muller, Eitan & Mahajan, Vijay, 2010. "Innovation diffusion and new product growth models: A critical review and research directions," International Journal of Research in Marketing, Elsevier, vol. 27(2), pages 91-106.
    2. Nejad, Mohammad G. & Amini, Mehdi & Babakus, Emin, 2015. "Success Factors in Product Seeding: The Role of Homophily," Journal of Retailing, Elsevier, vol. 91(1), pages 68-88.
    3. Ashkan Negahban & Jeffrey S. Smith, 2018. "A joint analysis of production and seeding strategies for new products: an agent-based simulation approach," Annals of Operations Research, Springer, vol. 268(1), pages 41-62, September.
    4. A. Negahban & J.S. Smith, 2016. "The effect of supply and demand uncertainties on the optimal production and sales plans for new products," International Journal of Production Research, Taylor & Francis Journals, vol. 54(13), pages 3852-3869, July.
    5. Elmar Kiesling & Markus Günther & Christian Stummer & Lea Wakolbinger, 2012. "Agent-based simulation of innovation diffusion: a review," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(2), pages 183-230, June.
    6. Rand, William & Rust, Roland T., 2011. "Agent-based modeling in marketing: Guidelines for rigor," International Journal of Research in Marketing, Elsevier, vol. 28(3), pages 181-193.
    7. Abedi, Vahideh Sadat, 2019. "Compartmental diffusion modeling: Describing customer heterogeneity & communication network to support decisions for new product introductions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    8. Hong, Jungsik & Koo, Hoonyoung & Kim, Taegu, 2016. "Easy, reliable method for mid-term demand forecasting based on the Bass model: A hybrid approach of NLS and OLS," European Journal of Operational Research, Elsevier, vol. 248(2), pages 681-690.
    9. Wenjing Shen & Izak Duenyas & Roman Kapuscinski, 2014. "Optimal Pricing, Production, and Inventory for New Product Diffusion Under Supply Constraints," Manufacturing & Service Operations Management, INFORMS, vol. 16(1), pages 28-45, February.
    10. Yan, Xiaoming & Liu, Ke, 2009. "Optimal control problems for a new product with word-of-mouth," International Journal of Production Economics, Elsevier, vol. 119(2), pages 402-414, June.
    11. Meade, Nigel & Islam, Towhidul, 2006. "Modelling and forecasting the diffusion of innovation - A 25-year review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 519-545.
    12. Goldenberg, Jacob & Libai, Barak & Muller, Eitan, 2010. "The chilling effects of network externalities," International Journal of Research in Marketing, Elsevier, vol. 27(1), pages 4-15.
    13. Peters, Kay & Albers, Sönke & Kumar, V., 2008. "Is there more to international Diffusion than Culture? An investigation on the Role of Marketing and Industry Variables," EconStor Preprints 27678, ZBW - Leibniz Information Centre for Economics.
    14. Amini, Mehdi & Li, Haitao, 2011. "Supply chain configuration for diffusion of new products: An integrated optimization approach," Omega, Elsevier, vol. 39(3), pages 313-322, June.
    15. Chumnumpan, Pattarin & Shi, Xiaohui, 2019. "Understanding new products’ market performance using Google Trends," Australasian marketing journal, Elsevier, vol. 27(2), pages 91-103.
    16. Bin Hu & Zhankun Sun, 2022. "Managing Self-Replicating Innovative Goods," Management Science, INFORMS, vol. 68(1), pages 399-419, January.
    17. Negahban, Ashkan & Dehghanimohammadabadi, Mohammad, 2018. "Optimizing the supply chain configuration and production-sales policies for new products over multiple planning horizons," International Journal of Production Economics, Elsevier, vol. 196(C), pages 150-162.
    18. Ivan Diaz-Rainey & Dionisia Tzavara, 2011. "Financing Renewable Energy through Household Adoption of Green Electricity Tariffs: A Diffusion Model of an Induced Environmental Market," Working Paper series, University of East Anglia, Centre for Competition Policy (CCP) 2011-03, Centre for Competition Policy, University of East Anglia, Norwich, UK..
    19. Kartik Hosanagar & Peng Han & Yong Tan, 2010. "Diffusion Models for Peer-to-Peer (P2P) Media Distribution: On the Impact of Decentralized, Constrained Supply," Information Systems Research, INFORMS, vol. 21(2), pages 271-287, June.
    20. Sebastian Schneider & Frank Huber, 2022. "You paid what!? Understanding price-related word-of-mouth and price perception among opinion leaders and innovators," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 21(1), pages 64-80, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:216:y:2012:i:2:p:301-311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.