[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v202y2010i2p356-367.html
   My bibliography  Save this article

Maximizing the net present value of a project under uncertainty

Author

Listed:
  • Wiesemann, Wolfram
  • Kuhn, Daniel
  • Rustem, Berç
Abstract
We address the maximization of a project's expected net present value when the activity durations and cash flows are described by a discrete set of alternative scenarios with associated occurrence probabilities. In this setting, the choice of scenario-independent activity start times frequently leads to infeasible schedules or severe losses in revenues. We suggest to determine an optimal target processing time policy for the project activities instead. Such a policy prescribes an activity to be started as early as possible in the realized scenario, but never before its (scenario-independent) target processing time. We formulate the resulting model as a global optimization problem and present a branch-and-bound algorithm for its solution. Extensive numerical results illustrate the suitability of the proposed policy class and the runtime behavior of the algorithm.

Suggested Citation

  • Wiesemann, Wolfram & Kuhn, Daniel & Rustem, Berç, 2010. "Maximizing the net present value of a project under uncertainty," European Journal of Operational Research, Elsevier, vol. 202(2), pages 356-367, April.
  • Handle: RePEc:eee:ejores:v:202:y:2010:i:2:p:356-367
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(09)00393-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Salah E. Elmaghraby & Jerzy Kamburowski, 1992. "The Analysis of Activity Networks Under Generalized Precedence Relations (GPRs)," Management Science, INFORMS, vol. 38(9), pages 1245-1263, September.
    2. A. H. Russell, 1970. "Cash Flows in Networks," Management Science, INFORMS, vol. 16(5), pages 357-373, January.
    3. Rolf H. Möhring & Frederik Stork, 2000. "Linear preselective policies for stochastic project scheduling," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 52(3), pages 501-515, December.
    4. Jorgensen, Trond & Wallace, Stein W., 2000. "Improving project cost estimation by taking into account managerial flexibility," European Journal of Operational Research, Elsevier, vol. 127(2), pages 239-251, December.
    5. Herroelen, Willy S. & Van Dommelen, Patrick & Demeulemeester, Erik L., 1997. "Project network models with discounted cash flows a guided tour through recent developments," European Journal of Operational Research, Elsevier, vol. 100(1), pages 97-121, July.
    6. Elmaghraby, Salah E., 2005. "On the fallacy of averages in project risk management," European Journal of Operational Research, Elsevier, vol. 165(2), pages 307-313, September.
    7. Xin Chen & Melvyn Sim & Peng Sun, 2007. "A Robust Optimization Perspective on Stochastic Programming," Operations Research, INFORMS, vol. 55(6), pages 1058-1071, December.
    8. Arnold H. Buss & Meir J. Rosenblatt, 1997. "Activity Delay in Stochastic Project Networks," Operations Research, INFORMS, vol. 45(1), pages 126-139, February.
    9. Tore Jonsbråten & Roger Wets & David Woodruff, 1998. "A class of stochastic programs withdecision dependent random elements," Annals of Operations Research, Springer, vol. 82(0), pages 83-106, August.
    10. Neumann, K. & Zimmermann, J., 2000. "Procedures for resource leveling and net present value problems in project scheduling with general temporal and resource constraints," European Journal of Operational Research, Elsevier, vol. 127(2), pages 425-443, December.
    11. Herroelen, Willy & Leus, Roel, 2005. "Project scheduling under uncertainty: Survey and research potentials," European Journal of Operational Research, Elsevier, vol. 165(2), pages 289-306, September.
    12. D. G. Malcolm & J. H. Roseboom & C. E. Clark & W. Fazar, 1959. "Application of a Technique for Research and Development Program Evaluation," Operations Research, INFORMS, vol. 7(5), pages 646-669, October.
    13. Brucker, Peter & Drexl, Andreas & Mohring, Rolf & Neumann, Klaus & Pesch, Erwin, 1999. "Resource-constrained project scheduling: Notation, classification, models, and methods," European Journal of Operational Research, Elsevier, vol. 112(1), pages 3-41, January.
    14. Elmaghraby, Salah E. & Herroelen, Willy S., 1990. "The scheduling of activities to maximize the net present value of projects," European Journal of Operational Research, Elsevier, vol. 49(1), pages 35-49, November.
    15. V. G. Kulkarni & V. G. Adlakha, 1986. "Markov and Markov-Regenerative pert Networks," Operations Research, INFORMS, vol. 34(5), pages 769-781, October.
    16. Stefano Benati, 2006. "An Optimization Model for Stochastic Project Networks with Cash Flows," Computational Management Science, Springer, vol. 3(4), pages 271-284, September.
    17. Christoph Schwindt & Jürgen Zimmermann, 2001. "A steepest ascent approach to maximizing the net present value of projects," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 53(3), pages 435-450, July.
    18. Tavares, L. Valadares & Antunes Ferreira, J. A. & Silva Coelho, J., 1998. "On the optimal management of project risk," European Journal of Operational Research, Elsevier, vol. 107(2), pages 451-469, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Creemers, Stefan, 2018. "Maximizing the expected net present value of a project with phase-type distributed activity durations: An efficient globally optimal solution procedure," European Journal of Operational Research, Elsevier, vol. 267(1), pages 16-22.
    2. Sobel, Matthew J. & Szmerekovsky, Joseph G. & Tilson, Vera, 2009. "Scheduling projects with stochastic activity duration to maximize expected net present value," European Journal of Operational Research, Elsevier, vol. 198(3), pages 697-705, November.
    3. Mika, Marek & Waligora, Grzegorz & Weglarz, Jan, 2005. "Simulated annealing and tabu search for multi-mode resource-constrained project scheduling with positive discounted cash flows and different payment models," European Journal of Operational Research, Elsevier, vol. 164(3), pages 639-668, August.
    4. He, Zhengwen & Wang, Nengmin & Jia, Tao & Xu, Yu, 2009. "Simulated annealing and tabu search for multi-mode project payment scheduling," European Journal of Operational Research, Elsevier, vol. 198(3), pages 688-696, November.
    5. Weglarz, Jan & Józefowska, Joanna & Mika, Marek & Waligóra, Grzegorz, 2011. "Project scheduling with finite or infinite number of activity processing modes - A survey," European Journal of Operational Research, Elsevier, vol. 208(3), pages 177-205, February.
    6. Öncü Hazir & Gündüz Ulusoy, 2020. "A classification and review of approaches and methods for modeling uncertainty in projects," Post-Print hal-02898162, HAL.
    7. Rostami, Salim & Creemers, Stefan & Leus, Roel, 2024. "Maximizing the net present value of a project under uncertainty: Activity delays and dynamic policies," European Journal of Operational Research, Elsevier, vol. 317(1), pages 16-24.
    8. Hazır, Öncü & Ulusoy, Gündüz, 2020. "A classification and review of approaches and methods for modeling uncertainty in projects," International Journal of Production Economics, Elsevier, vol. 223(C).
    9. Peymankar, Mahboobeh & Davari, Morteza & Ranjbar, Mohammad, 2021. "Maximizing the expected net present value in a project with uncertain cash flows," European Journal of Operational Research, Elsevier, vol. 294(2), pages 442-452.
    10. Bruni, Maria Elena & Hazır, Öncü, 2024. "A risk-averse distributionally robust project scheduling model to address payment delays," European Journal of Operational Research, Elsevier, vol. 318(2), pages 398-407.
    11. M. Vanhoucke, 2006. "An efficient hybrid search algorithm for various optimization problems," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 06/365, Ghent University, Faculty of Economics and Business Administration.
    12. Etgar, Ran & Gelbard, Roy & Cohen, Yuval, 2017. "Optimizing version release dates of research and development long-term processes," European Journal of Operational Research, Elsevier, vol. 259(2), pages 642-653.
    13. Yangyang Liang & Nanfang Cui & Tian Wang & Erik Demeulemeester, 2019. "Robust resource-constrained max-NPV project scheduling with stochastic activity duration," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(1), pages 219-254, March.
    14. Neumann, K. & Schwindt, C. & Zimmermann, J., 2003. "Order-based neighborhoods for project scheduling with nonregular objective functions," European Journal of Operational Research, Elsevier, vol. 149(2), pages 325-343, September.
    15. Jorgensen, Trond & Wallace, Stein W., 2000. "Improving project cost estimation by taking into account managerial flexibility," European Journal of Operational Research, Elsevier, vol. 127(2), pages 239-251, December.
    16. Illana Bendavid & Boaz Golany, 2011. "Setting gates for activities in the stochastic project scheduling problem through the cross entropy methodology," Annals of Operations Research, Springer, vol. 189(1), pages 25-42, September.
    17. Thomas Selle & Jürgen Zimmermann, 2003. "A bidirectional heuristic for maximizing the net present value of large‐scale projects subject to limited resources," Naval Research Logistics (NRL), John Wiley & Sons, vol. 50(2), pages 130-148, March.
    18. De Reyck, Bert & Herroelen, willy, 1998. "A branch-and-bound procedure for the resource-constrained project scheduling problem with generalized precedence relations," European Journal of Operational Research, Elsevier, vol. 111(1), pages 152-174, November.
    19. Kolisch, R. & Padman, R., 2001. "An integrated survey of deterministic project scheduling," Omega, Elsevier, vol. 29(3), pages 249-272, June.
    20. Illana Bendavid & Boaz Golany, 2011. "Predetermined intervals for start times of activities in the stochastic project scheduling problem," Annals of Operations Research, Springer, vol. 186(1), pages 429-442, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:202:y:2010:i:2:p:356-367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.