(This abstract was borrowed from another version of this item.)"> (This abstract was borrowed from another version of this item.)">
[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v74y2002i3p313-319.html
   My bibliography  Save this article

Testing for unit roots in the context of misspecified logarithmic random walks

Author

Listed:
  • Kramer, Walter
  • Davies, Laurie
Abstract
Testing for unit roots has been among the most heavily researched topics in Econometrics for the last quarter of a century. Much less researched is the equally important issue of the appropriate transformation if any of the variable of interest which should preceed any such testing. In macroeconometrics and empirical finance (stock prices, exchange rates) there are often compelling arguments in favor of a logarithmic transformation. Elsewhere, for instance in the modelling of interest rates, a levels specification automatically suggests itself. In many applications, however, it is not a priori clear, given that one suspects a unit root, whether this unit root is present in the levels or the logs, so there is certainly some interest in the testing for unit roots in the context of an incompletely specified nonlinear transformation of the data . This issue can be approached from various angles: One is to check which transformations leave the I (1)-property of a time series intact, the presumption being that any such transformation could then do little damage to the null distribution of a test for unit roots (Granger and Hallmann 1991; Ermini and Granger 1993 Corradi 1995). A related one is to use tests whose null distribution is robust to monotonic transformations, whether the transformed data are I (1) or not (Granger and Hallmann 1991 , Burridge and Guerre 1996 , Gourieroux and Breitung 1999) or to embed the levels and log specifications respectively in a general Box-Cox-framework and to estimate the transformation parameter before testing (Franses and McAleer 1998, Franses and Koop 1998 , Kobayashi and McAleer 1999). The present paper continues along the lines of Granger and Hallmann (1991) by focussing on a conventional test procedure, the standard Dickey-Fuller-test, and by investigating its properties under a misspecified nonlinear transformation in particular, investigating whether an existing unit root is still detected, i.e. the null hypothesis of an existing
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Kramer, Walter & Davies, Laurie, 2002. "Testing for unit roots in the context of misspecified logarithmic random walks," Economics Letters, Elsevier, vol. 74(3), pages 313-319, February.
  • Handle: RePEc:eee:ecolet:v:74:y:2002:i:3:p:313-319
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165-1765(01)00554-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ermini, Luigi & Granger, Clive W. J., 1993. "Some generalizations on the algebra of I(1) processes," Journal of Econometrics, Elsevier, vol. 58(3), pages 369-384, August.
    2. Stock, James H., 1994. "Deciding between I(1) and I(0)," Journal of Econometrics, Elsevier, vol. 63(1), pages 105-131, July.
    3. Park, Joon Y. & Phillips, Peter C.B., 1999. "Asymptotics For Nonlinear Transformations Of Integrated Time Series," Econometric Theory, Cambridge University Press, vol. 15(3), pages 269-298, June.
    4. Philip Hans Franses & Michael McAleer, 1998. "Testing for Unit Roots and Non‐linear Transformations," Journal of Time Series Analysis, Wiley Blackwell, vol. 19(2), pages 147-164, March.
    5. Breitung, Jorg & Gourieroux, Christian, 1997. "Rank tests for unit roots," Journal of Econometrics, Elsevier, vol. 81(1), pages 7-27, November.
    6. Burridge, Peter & Guerre, Emmanuel, 1996. "The Limit Distribution of level Crossings of a Random Walk, and a Simple Unit Root Test," Econometric Theory, Cambridge University Press, vol. 12(4), pages 705-723, October.
    7. Nelson, Charles R. & Plosser, Charles I., 1982. "Trends and random walks in macroeconmic time series : Some evidence and implications," Journal of Monetary Economics, Elsevier, vol. 10(2), pages 139-162.
    8. Franses, Philip Hans & Koop, Gary, 1998. "On the sensitivity of unit root inference to nonlinear data transformations," Economics Letters, Elsevier, vol. 59(1), pages 7-15, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krämer Walter, 2002. "Statistische Besonderheiten von Finanzzeitreihen / Statistical Properties of Financial Time Series," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 222(2), pages 210-229, April.
    2. Helmut Lütkepohl & Fang Xu, 2012. "The role of the log transformation in forecasting economic variables," Empirical Economics, Springer, vol. 42(3), pages 619-638, June.
    3. Yoon, Gawon, 2005. "An introduction to I([infinity]) processes," Economic Modelling, Elsevier, vol. 22(3), pages 473-483, May.
    4. Corradi, Valentina & Swanson, Norman R., 2006. "The effect of data transformation on common cycle, cointegration, and unit root tests: Monte Carlo results and a simple test," Journal of Econometrics, Elsevier, vol. 132(1), pages 195-229, May.
    5. Sakiru Adebola Solarin, 2017. "Testing for the Stationarity in Total Factor Productivity: Nonlinearity Evidence from 79 Countries," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 8(1), pages 141-158, March.
    6. Tuck Cheong Tang & Koi Nyen Wong, 2009. "Research Note: The SARS Epidemic and International Visitor Arrivals to Cambodia: Is the Impact Permanent or Transitory?," Tourism Economics, , vol. 15(4), pages 883-890, December.
    7. Damen, Sven & Vastmans, Frank & Buyst, Erik, 2016. "The effect of mortgage interest deduction and mortgage characteristics on house prices," Journal of Housing Economics, Elsevier, vol. 34(C), pages 15-29.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aparicio, Felipe M. & García, Ana, 2003. "Range unit root tests," DES - Working Papers. Statistics and Econometrics. WS ws031126, Universidad Carlos III de Madrid. Departamento de Estadística.
    2. Krämer Walter, 2002. "Statistische Besonderheiten von Finanzzeitreihen / Statistical Properties of Financial Time Series," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 222(2), pages 210-229, April.
    3. Corradi, Valentina & Swanson, Norman R., 2006. "The effect of data transformation on common cycle, cointegration, and unit root tests: Monte Carlo results and a simple test," Journal of Econometrics, Elsevier, vol. 132(1), pages 195-229, May.
    4. Aparicio, Felipe M., 2003. "On the record properties of integrated time series," DES - Working Papers. Statistics and Econometrics. WS ws036414, Universidad Carlos III de Madrid. Departamento de Estadística.
    5. Hong, Seung Hyun & Phillips, Peter C. B., 2010. "Testing Linearity in Cointegrating Relations With an Application to Purchasing Power Parity," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 96-114.
    6. Yoon, Gawon, 2005. "An introduction to I([infinity]) processes," Economic Modelling, Elsevier, vol. 22(3), pages 473-483, May.
    7. Morana, Claudio, 2024. "A new macro-financial condition index for the euro area," Econometrics and Statistics, Elsevier, vol. 29(C), pages 64-87.
    8. Alexeev, Vitali & Maynard, Alex, 2012. "Localized level crossing random walk test robust to the presence of structural breaks," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3322-3344.
    9. Berenguer-Rico, Vanessa & Gonzalo, Jesús, 2014. "Summability of stochastic processes—A generalization of integration for non-linear processes," Journal of Econometrics, Elsevier, vol. 178(P2), pages 331-341.
    10. Yamin Ahmad & Adam Check & Ming Chien Lo, 2024. "Unit Roots in Macroeconomic Time Series: A Comparison of Classical, Bayesian and Machine Learning Approaches," Computational Economics, Springer;Society for Computational Economics, vol. 63(6), pages 2139-2173, June.
    11. Ahn & Byung Chul, 1994. "Testing the null of stationarity in the presence of structural breaks for multiple time series," Econometrics 9411001, University Library of Munich, Germany, revised 08 Nov 1994.
    12. Christian Gourieroux & Joann Jasiak, 2011. "Nonlinear Persistence and Copersistence," Palgrave Macmillan Books, in: Greg N. Gregoriou & Razvan Pascalau (ed.), Nonlinear Financial Econometrics: Markov Switching Models, Persistence and Nonlinear Cointegration, chapter 4, pages 77-103, Palgrave Macmillan.
    13. Franses, Philip Hans & de Bruin, Paul, 2002. "On data transformations and evidence of nonlinearity," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 621-632, September.
    14. So, Beong Soo & Shin, Dong Wan, 2001. "An invariant sign test for random walks based on recursive median adjustment," Journal of Econometrics, Elsevier, vol. 102(2), pages 197-229, June.
    15. Gil-Alana, L. A. & Robinson, P. M., 1997. "Testing of unit root and other nonstationary hypotheses in macroeconomic time series," Journal of Econometrics, Elsevier, vol. 80(2), pages 241-268, October.
    16. Kornelis, Marcel & Dekimpe, Marnik G. & Leeflang, Peter S.H., 2008. "Does competitive entry structurally change key marketing metrics?," International Journal of Research in Marketing, Elsevier, vol. 25(3), pages 173-182.
    17. Helmut Lütkepohl & Fang Xu, 2012. "The role of the log transformation in forecasting economic variables," Empirical Economics, Springer, vol. 42(3), pages 619-638, June.
    18. Yoon, Gawon, 2005. "Long-memory property of nonlinear transformations of break processes," Economics Letters, Elsevier, vol. 87(3), pages 373-377, June.
    19. Gilles Dufrénot & Valérie Mignon, 2002. "La cointégration non linéaire : une note méthodologique," Economie & Prévision, La Documentation Française, vol. 155(4), pages 117-137.
    20. Lorenzo Trapani, 2021. "Testing for strict stationarity in a random coefficient autoregressive model," Econometric Reviews, Taylor & Francis Journals, vol. 40(3), pages 220-256, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:74:y:2002:i:3:p:313-319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.