Robust variable selection through MAVE
Author
Suggested Citation
DOI: 10.1016/j.csda.2013.01.021
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Cizek, P. & Hardle, W., 2006.
"Robust estimation of dimension reduction space,"
Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 545-555, November.
- Cizek, P. & Härdle, W.K., 2005. "Robust Estimation of Dimension Reduction Space," Discussion Paper 2005-31, Tilburg University, Center for Economic Research.
- Cizek, P. & Härdle, W.K., 2005. "Robust Estimation of Dimension Reduction Space," Other publications TiSEM 7b2ac092-61fc-482e-a59c-2, Tilburg University, School of Economics and Management.
- Lexin Li, 2007. "Sparse sufficient dimension reduction," Biometrika, Biometrika Trust, vol. 94(3), pages 603-613.
- Zhu, Yu & Zeng, Peng, 2006. "Fourier Methods for Estimating the Central Subspace and the Central Mean Subspace in Regression," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1638-1651, December.
- Liqiang Ni & R. Dennis Cook & Chih-Ling Tsai, 2005. "A note on shrinkage sliced inverse regression," Biometrika, Biometrika Trust, vol. 92(1), pages 242-247, March.
- Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
- Yingcun Xia & Howell Tong & W. K. Li & Li‐Xing Zhu, 2002. "An adaptive estimation of dimension reduction space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 363-410, August.
- Howard D. Bondell & Lexin Li, 2009. "Shrinkage inverse regression estimation for model‐free variable selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 287-299, January.
- Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
- Ye Z. & Weiss R.E., 2003. "Using the Bootstrap to Select One of a New Class of Dimension Reduction Methods," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 968-979, January.
- Lexin Li & R. Dennis Cook & Christopher J. Nachtsheim, 2005. "Model‐free variable selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 285-299, April.
- Wang, Qin & Yin, Xiangrong, 2008. "A nonlinear multi-dimensional variable selection method for high dimensional data: Sparse MAVE," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4512-4520, May.
- Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
- Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Dernoncourt, David & Hanczar, Blaise & Zucker, Jean-Daniel, 2014. "Analysis of feature selection stability on high dimension and small sample data," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 681-693.
- Zhang, Jing & Wang, Qin & Mays, D'Arcy, 2021. "Robust MAVE through nonconvex penalized regression," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
- Lv, Jing & Yang, Hu & Guo, Chaohui, 2015. "An efficient and robust variable selection method for longitudinal generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 74-88.
- Rekabdarkolaee, Hossein Moradi & Boone, Edward & Wang, Qin, 2017. "Robust estimation and variable selection in sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 146-157.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Moradi Rekabdarkolaee, Hossein & Wang, Qin, 2017. "Variable selection through adaptive MAVE," Statistics & Probability Letters, Elsevier, vol. 128(C), pages 44-51.
- Wang, Tao & Zhu, Lixing, 2013. "Sparse sufficient dimension reduction using optimal scoring," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 223-232.
- Weng, Jiaying, 2022. "Fourier transform sparse inverse regression estimators for sufficient variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
- Wang, Qin & Yin, Xiangrong, 2008. "A nonlinear multi-dimensional variable selection method for high dimensional data: Sparse MAVE," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4512-4520, May.
- Bilin Zeng & Xuerong Meggie Wen & Lixing Zhu, 2017. "A link-free sparse group variable selection method for single-index model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(13), pages 2388-2400, October.
- Changrong Yan & Dixin Zhang, 2013. "Sparse dimension reduction for survival data," Computational Statistics, Springer, vol. 28(4), pages 1835-1852, August.
- Wang, Pei & Yin, Xiangrong & Yuan, Qingcong & Kryscio, Richard, 2021. "Feature filter for estimating central mean subspace and its sparse solution," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).
- Yunquan Song & Zitong Li & Minglu Fang, 2022. "Robust Variable Selection Based on Penalized Composite Quantile Regression for High-Dimensional Single-Index Models," Mathematics, MDPI, vol. 10(12), pages 1-17, June.
- Wang, Qin & Yin, Xiangrong, 2008. "Sufficient dimension reduction and variable selection for regression mean function with two types of predictors," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2798-2803, November.
- Heng-Hui Lue & Bing-Ran You, 2013. "High-dimensional regression analysis with treatment comparisons," Computational Statistics, Springer, vol. 28(3), pages 1299-1317, June.
- Wei Sun & Lexin Li, 2012. "Multiple Loci Mapping via Model-free Variable Selection," Biometrics, The International Biometric Society, vol. 68(1), pages 12-22, March.
- Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
- Zichen Zhang & Ye Eun Bae & Jonathan R. Bradley & Lang Wu & Chong Wu, 2022. "SUMMIT: An integrative approach for better transcriptomic data imputation improves causal gene identification," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Peter Bühlmann & Jacopo Mandozzi, 2014. "High-dimensional variable screening and bias in subsequent inference, with an empirical comparison," Computational Statistics, Springer, vol. 29(3), pages 407-430, June.
- Capanu, Marinela & Giurcanu, Mihai & Begg, Colin B. & Gönen, Mithat, 2023. "Subsampling based variable selection for generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
- Loann David Denis Desboulets, 2018.
"A Review on Variable Selection in Regression Analysis,"
Econometrics, MDPI, vol. 6(4), pages 1-27, November.
- Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Post-Print hal-01954386, HAL.
- Zeyu Bian & Erica E. M. Moodie & Susan M. Shortreed & Sahir Bhatnagar, 2023. "Variable selection in regression‐based estimation of dynamic treatment regimes," Biometrics, The International Biometric Society, vol. 79(2), pages 988-999, June.
- Zanhua Yin, 2020. "Variable selection for sparse logistic regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(7), pages 821-836, October.
- Dumitrescu, Elena & Hué, Sullivan & Hurlin, Christophe & Tokpavi, Sessi, 2022.
"Machine learning for credit scoring: Improving logistic regression with non-linear decision-tree effects,"
European Journal of Operational Research, Elsevier, vol. 297(3), pages 1178-1192.
- Elena Ivona Dumitrescu & Sullivan Hué & Christophe Hurlin & Sessi Tokpavi, 2022. "Machine Learning for Credit Scoring: Improving Logistic Regression with Non Linear Decision Tree Effects," Post-Print hal-03331114, HAL.
- Pei Wang & Shunjie Chen & Sijia Yang, 2022. "Recent Advances on Penalized Regression Models for Biological Data," Mathematics, MDPI, vol. 10(19), pages 1-24, October.
More about this item
Keywords
Sufficient dimension reduction; MAVE; Shrinkage estimation; Robust estimation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:63:y:2013:i:c:p:42-49. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.