[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v133y2015icp131-142.html
   My bibliography  Save this article

Spatio-temporal performance of large-scale Gezira Irrigation Scheme, Sudan

Author

Listed:
  • Al Zayed, Islam Sabry
  • Elagib, Nadir Ahmed
  • Ribbe, Lars
  • Heinrich, Jürgen
Abstract
Information on irrigation indicators is needed to improve irrigation management. The objective of this paper is to assess the irrigation performance of the Gezira Scheme, Sudan. Data on climatic elements, irrigation water supply and crop yield for the period 1961–2010 integrated with remote sensing data from 2000 to 2014 are used. Crop evapotranspirations (ETc) are determined by FAO 56 reference evapotranspiration (ETo) with derived crop coefficients (kc) and the actual evapotranspiration (ETa) is estimated using FAO 33. Irrigation efficiency indicators, Relative Irrigation Supply (RIS) and Relative Water Supply (RWS), are calculated. Potential rainwater supply to crop is tested based on Moisture Availability Index (MAI) and Ratio of Moisture Availability (RMA). Furthermore, Water Use Efficiency (WUE) is used to assess the water productivity. For the spatial drought assessment, a modified Vegetation Condition Index (MVCI) derived from remotely-sensed data is used. The results of RIS and RWS show respectively that the irrigation efficiency has decreased since 1993/1994 from 1.40 and 1.70 to 2.23 and 2.60, respectively. MAI for cotton and sorghum presents moderate deficit values (0.4 to 0.68) in July and August. RMA has an average value of 0.67, 0.49 and 0.46 in July for cotton, groundnut and sorghum, respectively, indicating a promising rainfall contribution to irrigation. The Gezira Scheme achieves low WUE in comparison to many irrigation schemes of the globe. Based on the MVCI analysis, the northern part of the scheme experiences characteristic drought during the summer crop season whereas irrigation water is abundantly available during the winter. In conclusion, the overall water availability is higher than the demand; most likely the rain is not considered in irrigation scheduling. Low productivity is mainly due to poor distribution and irrigation mismanagement. Rain and drained irrigation water harvesting could be addressed in the scheme for balancing the demand and supply.

Suggested Citation

  • Al Zayed, Islam Sabry & Elagib, Nadir Ahmed & Ribbe, Lars & Heinrich, Jürgen, 2015. "Spatio-temporal performance of large-scale Gezira Irrigation Scheme, Sudan," Agricultural Systems, Elsevier, vol. 133(C), pages 131-142.
  • Handle: RePEc:eee:agisys:v:133:y:2015:i:c:p:131-142
    DOI: 10.1016/j.agsy.2014.10.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X14001413
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2014.10.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abdelhadi, A. W. & Hata, Takeshi & Tanakamaru, Haruya & Tada, Akio & Tariq, M. A., 2000. "Estimation of crop water requirements in arid region using Penman-Monteith equation with derived crop coefficients: a case study on Acala cotton in Sudan Gezira irrigated scheme," Agricultural Water Management, Elsevier, vol. 45(2), pages 203-214, July.
    2. Zhang, Xiying & Chen, Suying & Sun, Hongyong & Shao, Liwei & Wang, Yanzhe, 2011. "Changes in evapotranspiration over irrigated winter wheat and maize in North China Plain over three decades," Agricultural Water Management, Elsevier, vol. 98(6), pages 1097-1104, April.
    3. Plusquellec, H., 1990. "The Gezira Irrigation Scheme In Sudan: Objectives, Design, And Performance," Papers 120, World Bank - Technical Papers.
    4. Bushara, Mohamed O.A. & Barakat, Hoyam E., 2010. "Decomposing Total Factor Productivity Change of Cotton Cultivars (Barakat-90 and Barac (67)B) in the Gezira Scheme (1991 – 2007) Sudan," 2010 AAAE Third Conference/AEASA 48th Conference, September 19-23, 2010, Cape Town, South Africa 96648, African Association of Agricultural Economists (AAAE).
    5. Zwart, Sander J. & Bastiaanssen, Wim G.M., 2007. "SEBAL for detecting spatial variation of water productivity and scope for improvement in eight irrigated wheat systems," Agricultural Water Management, Elsevier, vol. 89(3), pages 287-296, May.
    6. Guvele, C. A., 2001. "Gains from crop diversification in the Sudan Gezira scheme," Agricultural Systems, Elsevier, vol. 70(1), pages 319-333, October.
    7. Zwart, Sander J. & Bastiaanssen, Wim G. M., 2004. "Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize," Agricultural Water Management, Elsevier, vol. 69(2), pages 115-133, September.
    8. Kloezen, Wim H. & Garces-Restrepo, Carlos, 1998. "Assessing irrigation performance with comparative indicators: The case of the Alto Rio Lerma Irrigation District, Mexico," IWMI Research Reports 44580, International Water Management Institute.
    9. Salvador, R. & Martínez-Cob, A. & Cavero, J. & Playán, E., 2011. "Seasonal on-farm irrigation performance in the Ebro basin (Spain): Crops and irrigation systems," Agricultural Water Management, Elsevier, vol. 98(4), pages 577-587, February.
    10. Kloezen, W. H. & Garces-Restrepo, C., 1998. "Evaluacion del desempeno del riego con indicadores comparativos: el caso del Distrito de Riego Alto Rio Lerma, Mexico. In Spanish," IWMI Research Reports H022236, International Water Management Institute.
    11. Rosenow, D. T. & Quisenberry, J. E. & Wendt, C. W. & Clark, L. E., 1983. "Drought tolerant sorghum and cotton germplasm," Agricultural Water Management, Elsevier, vol. 7(1-3), pages 207-222, September.
    12. Kloezen, W. H. & Garces-Restrepo, C., 1998. "Assessing irrigation performance with comparative indicators: the case of the Alto Rio Lerma Irrigation District, Mexico," IWMI Research Reports H045356, International Water Management Institute.
    13. Bandara, K. M. P. S., 2003. "Monitoring irrigation performance in Sri Lanka with high-frequency satellite measurements during the dry season," Agricultural Water Management, Elsevier, vol. 58(2), pages 159-170, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ebun Akinsete & Lydia Stergiopoulou & Nouran El Said & Phoebe Koundouri, 2022. "Multi-Actor Working Groups as Fora for WEF Nexus Innovation and Resilience," DEOS Working Papers 2219, Athens University of Economics and Business.
    2. Al Zayed, Islam Sabry & Elagib, Nadir Ahmed & Ribbe, Lars & Heinrich, Jürgen, 2016. "Satellite-based evapotranspiration over Gezira Irrigation Scheme, Sudan: A comparative study," Agricultural Water Management, Elsevier, vol. 177(C), pages 66-76.
    3. Seijger, Chris & Chukalla, Abebe & Bremer, Karin & Borghuis, Gerlo & Christoforidou, Maria & Mul, Marloes & Hellegers, Petra & van Halsema, Gerardo, 2023. "Agronomic analysis of WaPOR applications: Confirming conservative biomass water productivity in inherent and climatological variance of WaPOR data outputs," Agricultural Systems, Elsevier, vol. 211(C).
    4. Goelnitz, Anna & Al-Saidi, Mohammad, 2020. "Too big to handle, too important to abandon: Reforming Sudan’s Gezira scheme," Agricultural Water Management, Elsevier, vol. 241(C).
    5. Rocío Poveda-Bautista & Bernat Roig-Merino & Herminia Puerto & Juan Buitrago-Vera, 2021. "Assessment of Irrigation Water Use Efficiency in Citrus Orchards Using AHP," IJERPH, MDPI, vol. 18(11), pages 1-14, May.
    6. Awada, Hassan & Di Prima, Simone & Sirca, Costantino & Giadrossich, Filippo & Marras, Serena & Spano, Donatella & Pirastru, Mario, 2022. "A remote sensing and modeling integrated approach for constructing continuous time series of daily actual evapotranspiration," Agricultural Water Management, Elsevier, vol. 260(C).
    7. van Opstal, Jonna D. & Neale, Christopher M.U. & Hipps, Lawrence E., 2022. "Evaluating the adaptability of an irrigation district to seasonal water availability using a decade of remotely sensed evapotranspiration estimates," Agricultural Water Management, Elsevier, vol. 261(C).
    8. Elshaikh, Ahmed E. & Jiao, Xiyun & Yang, Shi-hong, 2018. "Performance evaluation of irrigation projects: Theories, methods, and techniques," Agricultural Water Management, Elsevier, vol. 203(C), pages 87-96.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Uysal, Özlem Karahan & AtIs, Ela, 2010. "Assessing the performance of participatory irrigation management over time: A case study from Turkey," Agricultural Water Management, Elsevier, vol. 97(7), pages 1017-1025, July.
    2. Kukul, Y.S. & Akçay, S. & Anaç, S. & YesilIrmak, E., 2008. "Temporal irrigation performance assessment in Turkey: Menemen case study," Agricultural Water Management, Elsevier, vol. 95(9), pages 1090-1098, September.
    3. Al Zayed, Islam Sabry & Elagib, Nadir Ahmed & Ribbe, Lars & Heinrich, Jürgen, 2016. "Satellite-based evapotranspiration over Gezira Irrigation Scheme, Sudan: A comparative study," Agricultural Water Management, Elsevier, vol. 177(C), pages 66-76.
    4. Immerzeel, W.W. & Gaur, A. & Zwart, S.J., 2008. "Integrating remote sensing and a process-based hydrological model to evaluate water use and productivity in a south Indian catchment," Agricultural Water Management, Elsevier, vol. 95(1), pages 11-24, January.
    5. Gao, Yang & Yang, Linlin & Shen, Xiaojun & Li, Xinqiang & Sun, Jingsheng & Duan, Aiwang & Wu, Laosheng, 2014. "Winter wheat with subsurface drip irrigation (SDI): Crop coefficients, water-use estimates, and effects of SDI on grain yield and water use efficiency," Agricultural Water Management, Elsevier, vol. 146(C), pages 1-10.
    6. Li, Xiaolin & Tong, Ling & Niu, Jun & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Spatio-temporal distribution of irrigation water productivity and its driving factors for cereal crops in Hexi Corridor, Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 55-63.
    7. Cai, Ximing & Yang, Yi-Chen E. & Ringler, Claudia & Zhao, Jianshi & You, Liangzhi, 2011. "Agricultural water productivity assessment for the Yellow River Basin," Agricultural Water Management, Elsevier, vol. 98(8), pages 1297-1306, May.
    8. Zwart, Sander J. & Bastiaanssen, Wim G.M. & de Fraiture, Charlotte & Molden, David J., 2010. "WATPRO: A remote sensing based model for mapping water productivity of wheat," Agricultural Water Management, Elsevier, vol. 97(10), pages 1628-1636, October.
    9. Juárez-Torres, Miriam & Sánchez-Aragón, Leonardo & Vedenov, Dmitry, 2017. "Weather Derivatives and Water Management in Developing Countries: An Application for an Irrigation District in Central Mexico," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 42(2), May.
    10. Muhammad Arfan, 2022. "Mapping Impact of Farmer’s Organisation on the Equity of Water and Land Productivity: Evidence from Pakistan (Article)," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 61(2), pages 275-294.
    11. Yousaf, Wasif & Awan, Wakas Karim & Kamran, Muhammad & Ahmad, Sajid Rashid & Bodla, Habib Ullah & Riaz, Mohammad & Umar, Muhammad & Chohan, Khurram, 2021. "A paradigm of GIS and remote sensing for crop water deficit assessment in near real time to improve irrigation distribution plan," Agricultural Water Management, Elsevier, vol. 243(C).
    12. Islam, AFM Tariqul & Islam, AKM Saiful & Islam, GM Tarekul & Bala, Sujit Kumar & Salehin, Mashfiqus & Choudhury, Apurba Kanti & Dey, Nepal C. & Mahboob, M. Golam, 2023. "Simulation of water productivity of wheat in northwestern Bangladesh using multi-satellite data," Agricultural Water Management, Elsevier, vol. 281(C).
    13. Cai, X.L. & Sharma, B.R., 2010. "Integrating remote sensing, census and weather data for an assessment of rice yield, water consumption and water productivity in the Indo-Gangetic river basin," Agricultural Water Management, Elsevier, vol. 97(2), pages 309-316, February.
    14. Zhang, Xiying & Uwimpaye, Fasilate & Yan, Zongzheng & Shao, Liwei & Chen, Suying & Sun, Hongyong & Liu, Xiuwei, 2021. "Water productivity improvement in summer maize – A case study in the North China Plain from 1980 to 2019," Agricultural Water Management, Elsevier, vol. 247(C).
    15. Zhang, Xiying & Qin, Wenli & Chen, Suying & Shao, Liwei & Sun, Hongyong, 2017. "Responses of yield and WUE of winter wheat to water stress during the past three decades—A case study in the North China Plain," Agricultural Water Management, Elsevier, vol. 179(C), pages 47-54.
    16. Yan, Nana & Wu, Bingfang, 2014. "Integrated spatial–temporal analysis of crop water productivity of winter wheat in Hai Basin," Agricultural Water Management, Elsevier, vol. 133(C), pages 24-33.
    17. Nadeem Ul Haque & Faheem Jehangir Khan (ed.), 2022. "RASTA Local Research, Local Solutions: Political Economy Of Development Reform, Volume VI," PIDE Books, Pakistan Institute of Development Economics, number 2022:6.
    18. Zwart, Sander J. & Bastiaanssen, Wim G.M. & de Fraiture, Charlotte & Molden, David J., 2010. "A global benchmark map of water productivity for rainfed and irrigated wheat," Agricultural Water Management, Elsevier, vol. 97(10), pages 1617-1627, October.
    19. Shah, Tushaar & van Koppen, Barbara & Merrey, Douglas J. & de Lange, Marna & Samad, Madar, 2002. "Institutional alternatives in African smallholder irrigation: Lessons from international experience with irrigation management transfer," IWMI Research Reports 44563, International Water Management Institute.
    20. L. Muthuwatta & Mobin-ud-Din Ahmad & M. Bos & T. Rientjes, 2010. "Assessment of Water Availability and Consumption in the Karkheh River Basin, Iran—Using Remote Sensing and Geo-statistics," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(3), pages 459-484, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:133:y:2015:i:c:p:131-142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.