[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v100y2009i1-3p1-10.html
   My bibliography  Save this article

Using on-field data to develop the EFI© information system to characterise agronomic productivity and labour efficiency in peach (Prunus persica L. Batsch) orchards in France

Author

Listed:
  • Plénet, Daniel
  • Giauque, Pierre
  • Navarro, Eric
  • Millan, Muriel
  • Hilaire, Christian
  • Hostalnou, Eric
  • Lyoussoufi, Abder
  • Samie, Jean-François
Abstract
An Internet database to record information from growers' plots was developed to characterise agronomic performance and labour efficiency of peach-nectarine (Prunus persica L. Batsch) production in France. Six indicators were used: gross yield (Yield), percentage of fruit size above or equal to grade A (GradesA), fresh marketable yield in GradesA (MYieldA), total working time (Hours in h ha-1), total working time per gross yield (HoursYield) and total working time per fresh marketable yield in GradesA (HoursMYieldA). The database contained 24,737 year-plots over the period 2000-2005, representing nearly 30% of the French peach-nectarine production. References based on the median and the 20th and 80th percentiles were developed for ~100 of the most commonly-grown cultivars and presented for yellow-fleshed peach cultivars. The growers who recorded their data in the EFI database were then able to carry out an assessment of each plot in their orchards by comparison with the reference values of the six indicators. The analyse of EFI database on the country scale showed that the maturity period was the main factor which strongly affected agronomic performances and labour efficiency ratios, but not total working times. Nectarine genetic traits reduced only fruit size. Working times for the main manual operations were very significantly affected by region factor partly because orchard height differed according to regions. Tree height strongly influenced the performances. Low trees decreased yield (-4.9 Mg ha-1) and high trees increased total working time about 190 h ha-1 compared to mid-high trees. The use of the EFI information system by the growers is discussed in relation with the participatory process in which technical advisers make it possible to build a tool to support the decision-making process in accordance with users' expectations.

Suggested Citation

  • Plénet, Daniel & Giauque, Pierre & Navarro, Eric & Millan, Muriel & Hilaire, Christian & Hostalnou, Eric & Lyoussoufi, Abder & Samie, Jean-François, 2009. "Using on-field data to develop the EFI© information system to characterise agronomic productivity and labour efficiency in peach (Prunus persica L. Batsch) orchards in France," Agricultural Systems, Elsevier, vol. 100(1-3), pages 1-10, April.
  • Handle: RePEc:eee:agisys:v:100:y:2009:i:1-3:p:1-10
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308-521X(08)00130-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hussain, Intizar & Sakthivadivel, R & Amarasinghe, Upali, 2003. "Land and water productivity of wheat in the Western Indo-Gangetic Plains of India and Pakistan: a comparative analysis," IWMI Books, Reports H041504, International Water Management Institute.
    2. Dalsgaard, J. P. T. & Oficial, R. T., 1997. "A quantitative approach for assessing the productive performance and ecological contributions of smallholder farms," Agricultural Systems, Elsevier, vol. 55(4), pages 503-533, December.
    3. Hussain, Intizar & Sakthivadivel, Ramasamy & Amarasinghe, Upali A. & Mudasser, Muhammad & Molden, David J., 2003. "Land and water productivity of wheat in the Western Indo-Gangetic Plains of India and Pakistan: a comparative analysis," IWMI Research Reports 52972, International Water Management Institute.
    4. Dore, T. & Sebillotte, M. & Meynard, J. M., 1997. "A diagnostic method for assessing regional variations in crop yield," Agricultural Systems, Elsevier, vol. 54(2), pages 169-188, June.
    5. Hussain, Intizar & Sakthivadivel, R. & Amarasinghe, Upali A., 2003. "Land and water productivity of wheat in the Western Indo-Gangetic Plains of India and Pakistan: a comparative analysis," Book Chapters,, International Water Management Institute.
    6. Chatelin, M. H. & Aubry, C. & Poussin, J. C. & Meynard, J. M. & Masse, J. & Verjux, N. & Gate, Ph. & Le Bris, X., 2005. "DeciBle, a software package for wheat crop management simulation," Agricultural Systems, Elsevier, vol. 83(1), pages 77-99, January.
    7. Hussain, I. & Sakthivadivel, R. & Amarasinghe, U. & Mudasser, M. & Molden, D., 2003. "Land and water productivity of wheat in the Western Indo-Gangetic Plains of India and Pakistan: a comparative analysis," IWMI Research Reports H031469, International Water Management Institute.
    8. McCown, R. L., 2002. "Changing systems for supporting farmers' decisions: problems, paradigms, and prospects," Agricultural Systems, Elsevier, vol. 74(1), pages 179-220, October.
    9. Aubry, C. & Papy, F. & Capillon, A., 1998. "Modelling decision-making processes for annual crop management," Agricultural Systems, Elsevier, vol. 56(1), pages 45-65, January.
    10. Carberry, P. S. & Hochman, Z. & McCown, R. L. & Dalgliesh, N. P. & Foale, M. A. & Poulton, P. L. & Hargreaves, J. N. G. & Hargreaves, D. M. G. & Cawthray, S. & Hillcoat, N. & Robertson, M. J., 2002. "The FARMSCAPE approach to decision support: farmers', advisers', researchers' monitoring, simulation, communication and performance evaluation," Agricultural Systems, Elsevier, vol. 74(1), pages 141-177, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grechi, Isabelle & Ould-Sidi, Mohamed-Mahmoud & Hilgert, Nadine & Senoussi, Rachid & Sauphanor, Benoît & Lescourret, Françoise, 2012. "Designing integrated management scenarios using simulation-based and multi-objective optimization: Application to the peach tree–Myzus persicae aphid system," Ecological Modelling, Elsevier, vol. 246(C), pages 47-59.
    2. Jara-Rojas, Roberto & Bravo-Ureta, Boris & Solis, Daniel & Martinez, Daniela, 2016. "Production efficiency and commercialization channels among small-scale farmers: Evidence for raspberry production in Central Chile," 2016 Annual Meeting, February 6-9, 2016, San Antonio, Texas 229330, Southern Agricultural Economics Association.
    3. Jara-Rojas, Roberto & Bravo-Ureta, Boris E. & Solis, Daniel & Arriagada, Daniela Martinez, 2017. "Technical Efficiency and Marketing Channels Among Small-Scale Farmers: Evidence for Raspberry Production in Chile," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 21(3), November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, M. Dinesh & Trivedi, K. & Singh, O. P., 2009. "Analyzing the impact of quality and reliability of irrigation water on crop water productivity using an irrigation quality index," IWMI Books, Reports H042636, International Water Management Institute.
    2. Mohammed Mainuddin & Mac Kirby, 2009. "Agricultural productivity in the lower Mekong Basin: trends and future prospects for food security," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 1(1), pages 71-82, February.
    3. Vyshpolsky, F. & Mukhamedjanov, K. & Bekbaev, U. & Ibatullin, S. & Yuldashev, T. & Noble, A.D. & Mirzabaev, A. & Aw-Hassan, A. & Qadir, M., 2010. "Optimizing the rate and timing of phosphogypsum application to magnesium-affected soils for crop yield and water productivity enhancement," Agricultural Water Management, Elsevier, vol. 97(9), pages 1277-1286, September.
    4. Kumar, M. Dinesh & Trivedi, K. & Singh, O.P., 2009. "Analyzing the impact of quality and reliability of irrigation water on crop water productivity using an irrigation quality index," Book Chapters,, International Water Management Institute.
    5. Basel F. Y. Khader & Yigezu A. Yigezu & Mahmud A. Duwayri & Abdul Aziz Niane & Kamil Shideed, 2019. "Where in the value chain are we losing the most food? The case of wheat in Jordan," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 11(5), pages 1009-1027, October.
    6. Islam, AFM Tariqul & Islam, AKM Saiful & Islam, GM Tarekul & Bala, Sujit Kumar & Salehin, Mashfiqus & Choudhury, Apurba Kanti & Dey, Nepal C. & Mahboob, M. Golam, 2023. "Simulation of water productivity of wheat in northwestern Bangladesh using multi-satellite data," Agricultural Water Management, Elsevier, vol. 281(C).
    7. Aliasghar Montazar & E. Zadbagher, 2010. "An Analytical Hierarchy Model for Assessing Global Water Productivity of Irrigation Networks in Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(11), pages 2817-2832, September.
    8. Giordano, Meredith & Turral, H. & Scheierling, S. M. & Treguer, D. O. & McCornick, Peter G, 2017. "Beyond “More Crop per Drop”: evolving thinking on agricultural water productivity," IWMI Research Reports 257962, International Water Management Institute.
    9. Sikka, A. K. & Bhatnagar, P. R., 2006. "Realizing the potential: using pumps to enhance productivity in the Eastern Indo- Gangetic Plains," IWMI Books, Reports H039317, International Water Management Institute.
    10. Hussain, Intizar, 2004. "Have low irrigation service charges disadvantaged the poor?," Conference Papers h033989, International Water Management Institute.
    11. Kelemework, D., 2008. "A comparative analysis of the technical efficiency of irrigated and rainfed agriculture: a case of Awash and Rift valleys of Ethiopia," Conference Papers h044137, International Water Management Institute.
    12. Akram, Agha Ali, 2014. "Agricultural Water Allocation Efficiency and Farmer Adaptation to Heterogeneous Water Availability in a Developing Country Canal Irrigation System," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170855, Agricultural and Applied Economics Association.
    13. Bessembinder, J.J.E. & Leffelaar, P.A. & Dhindwal, A.S. & Ponsioen, T.C., 2005. "Which crop and which drop, and the scope for improvement of water productivity," Agricultural Water Management, Elsevier, vol. 73(2), pages 113-130, May.
    14. Singh, R. & van Dam, J.C. & Feddes, R.A., 2006. "Water productivity analysis of irrigated crops in Sirsa district, India," Agricultural Water Management, Elsevier, vol. 82(3), pages 253-278, April.
    15. Ines, Amor V.M. & Honda, Kiyoshi & Das Gupta, Ashim & Droogers, Peter & Clemente, Roberto S., 2006. "Combining remote sensing-simulation modeling and genetic algorithm optimization to explore water management options in irrigated agriculture," Agricultural Water Management, Elsevier, vol. 83(3), pages 221-232, June.
    16. Cai, Xueliang & Sharma, Bharat R. & Matin, Mir Abdul & Sharma, Devesh & Gunasinghe, Sarath, 2010. "An assessment of crop water productivity in the Indus and Ganges River Basins: current status and scope for improvement," IWMI Research Reports 112970, International Water Management Institute.
    17. Vazifedoust, M. & van Dam, J.C. & Feddes, R.A. & Feizi, M., 2008. "Increasing water productivity of irrigated crops under limited water supply at field scale," Agricultural Water Management, Elsevier, vol. 95(2), pages 89-102, February.
    18. Chatelin, M. H. & Aubry, C. & Poussin, J. C. & Meynard, J. M. & Masse, J. & Verjux, N. & Gate, Ph. & Le Bris, X., 2005. "DeciBle, a software package for wheat crop management simulation," Agricultural Systems, Elsevier, vol. 83(1), pages 77-99, January.
    19. Muthuwatta, L.P. & Rientjes, T.H.M. & Bos, M.G., 2013. "Strategies to increase wheat production in the water scarce Karkheh River Basin, Iran," Agricultural Water Management, Elsevier, vol. 124(C), pages 1-10.
    20. Martin, G. & Duru, M. & Schellberg, J. & Ewert, F., 2012. "Simulations of plant productivity are affected by modelling approaches of farm management," Agricultural Systems, Elsevier, vol. 109(C), pages 25-34.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:100:y:2009:i:1-3:p:1-10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.