[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/matsoc/v75y2015icp102-114.html
   My bibliography  Save this article

Rethinking common belief, revision, and backward induction

Author

Listed:
  • Rich, Patricia
Abstract
Whether rationality and common belief in rationality jointly entail the backward inductive outcome in centipede games has long been debated. Stalnaker’s compelling negative argument appeals to the AGM belief revision postulates to argue that off-path moves may be rational, given the revisions they may prompt. I counter that the structure of common belief and the principles of AGM justify an additional assumption about revision. I then prove that, given my proposed constraint, for all finite, n-player, extensive form, perfect information games with a unique backward inductive solution, if there is initial common belief in rationality, then backward induction is guaranteed.

Suggested Citation

  • Rich, Patricia, 2015. "Rethinking common belief, revision, and backward induction," Mathematical Social Sciences, Elsevier, vol. 75(C), pages 102-114.
  • Handle: RePEc:eee:matsoc:v:75:y:2015:i:c:p:102-114
    DOI: 10.1016/j.mathsocsci.2015.03.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165489615000207
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.mathsocsci.2015.03.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kreps, David M. & Milgrom, Paul & Roberts, John & Wilson, Robert, 1982. "Rational cooperation in the finitely repeated prisoners' dilemma," Journal of Economic Theory, Elsevier, vol. 27(2), pages 245-252, August.
    2. Perea, Andrés, 2014. "Plausibility Orderings In Dynamic Games," Economics and Philosophy, Cambridge University Press, vol. 30(3), pages 331-364, November.
    3. , & ,, 2013. "The order independence of iterated dominance in extensive games," Theoretical Economics, Econometric Society, vol. 8(1), January.
    4. Merrill M. Flood, 1958. "Some Experimental Games," Management Science, INFORMS, vol. 5(1), pages 5-26, October.
    5. Stalnaker, Robert, 1998. "Belief revision in games: forward and backward induction1," Mathematical Social Sciences, Elsevier, vol. 36(1), pages 31-56, July.
    6. Graciela Kuechle, 2009. "What Happened To The Three‐Legged Centipede Game?," Journal of Economic Surveys, Wiley Blackwell, vol. 23(3), pages 562-585, July.
    7. Shimoji, Makoto & Watson, Joel, 1998. "Conditional Dominance, Rationalizability, and Game Forms," Journal of Economic Theory, Elsevier, vol. 83(2), pages 161-195, December.
    8. Aumann, Robert J., 1995. "Backward induction and common knowledge of rationality," Games and Economic Behavior, Elsevier, vol. 8(1), pages 6-19.
    9. Battigalli, Pierpaolo, 1997. "On Rationalizability in Extensive Games," Journal of Economic Theory, Elsevier, vol. 74(1), pages 40-61, May.
    10. Perea, Andrés, 2014. "Belief in the opponentsʼ future rationality," Games and Economic Behavior, Elsevier, vol. 83(C), pages 231-254.
    11. Pearce, David G, 1984. "Rationalizable Strategic Behavior and the Problem of Perfection," Econometrica, Econometric Society, vol. 52(4), pages 1029-1050, July.
    12. Arieli, Itai & Aumann, Robert J., 2015. "The logic of backward induction," Journal of Economic Theory, Elsevier, vol. 159(PA), pages 443-464.
    13. Rosenthal, Robert W., 1981. "Games of perfect information, predatory pricing and the chain-store paradox," Journal of Economic Theory, Elsevier, vol. 25(1), pages 92-100, August.
    14. Battigalli, Pierpaolo & Siniscalchi, Marciano, 2002. "Strong Belief and Forward Induction Reasoning," Journal of Economic Theory, Elsevier, vol. 106(2), pages 356-391, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bonanno, Giacomo, 2014. "A doxastic behavioral characterization of generalized backward induction," Games and Economic Behavior, Elsevier, vol. 88(C), pages 221-241.
    2. Asheim, Geir B. & Brunnschweiler, Thomas, 2023. "Epistemic foundation of the backward induction paradox," Games and Economic Behavior, Elsevier, vol. 141(C), pages 503-514.
    3. Battigalli, Pierpaolo & De Vito, Nicodemo, 2021. "Beliefs, plans, and perceived intentions in dynamic games," Journal of Economic Theory, Elsevier, vol. 195(C).
    4. Zuazo-Garin, Peio, 2017. "Uncertain information structures and backward induction," Journal of Mathematical Economics, Elsevier, vol. 71(C), pages 135-151.
    5. Perea, Andrés, 2018. "Why forward induction leads to the backward induction outcome: A new proof for Battigalli's theorem," Games and Economic Behavior, Elsevier, vol. 110(C), pages 120-138.
    6. Andrés Perea & Elias Tsakas, 2019. "Limited focus in dynamic games," International Journal of Game Theory, Springer;Game Theory Society, vol. 48(2), pages 571-607, June.
    7. Catonini, Emiliano, 2020. "On non-monotonic strategic reasoning," Games and Economic Behavior, Elsevier, vol. 120(C), pages 209-224.
    8. Perea ý Monsuwé, A., 2006. "Epistemic foundations for backward induction: an overview," Research Memorandum 036, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    9. Arieli, Itai & Aumann, Robert J., 2015. "The logic of backward induction," Journal of Economic Theory, Elsevier, vol. 159(PA), pages 443-464.
    10. Aviad Heifetz & Andrés Perea, 2015. "On the outcome equivalence of backward induction and extensive form rationalizability," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(1), pages 37-59, February.
    11. Heifetz Aviad & Meier Martin & Schipper Burkhard C., 2021. "Prudent Rationalizability in Generalized Extensive-form Games with Unawareness," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 21(2), pages 525-556, June.
    12. Asheim, Geir B., 2002. "On the epistemic foundation for backward induction," Mathematical Social Sciences, Elsevier, vol. 44(2), pages 121-144, November.
    13. Manili, Julien, 2024. "Order independence for rationalizability," Games and Economic Behavior, Elsevier, vol. 143(C), pages 152-160.
    14. Battigalli, Pierpaolo & Siniscalchi, Marciano, 1999. "Hierarchies of Conditional Beliefs and Interactive Epistemology in Dynamic Games," Journal of Economic Theory, Elsevier, vol. 88(1), pages 188-230, September.
    15. Perea Andrés, 2003. "Rationalizability and Minimal Complexity in Dynamic Games," Research Memorandum 047, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    16. Burkhard C. Schipper & Hang Zhou, 2022. "Level-k Thinking in the Extensive Form," Working Papers 352, University of California, Davis, Department of Economics.
    17. Battigalli, Pierpaolo & Bonanno, Giacomo, 1999. "Recent results on belief, knowledge and the epistemic foundations of game theory," Research in Economics, Elsevier, vol. 53(2), pages 149-225, June.
    18. Dekel, Eddie & Siniscalchi, Marciano, 2015. "Epistemic Game Theory," Handbook of Game Theory with Economic Applications,, Elsevier.
    19. Battigalli, P. & Catonini, E. & Manili, J., 2023. "Belief change, rationality, and strategic reasoning in sequential games," Games and Economic Behavior, Elsevier, vol. 142(C), pages 527-551.
    20. Perea, Andrés, 2014. "Belief in the opponentsʼ future rationality," Games and Economic Behavior, Elsevier, vol. 83(C), pages 231-254.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matsoc:v:75:y:2015:i:c:p:102-114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505565 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.