[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i15p9300-d875173.html
   My bibliography  Save this article

A Review of Farmland Soil Health Assessment Methods: Current Status and a Novel Approach

Author

Listed:
  • Zakir Hussain

    (Laboratory of Mountain Surface Processes and Ecological Regulation, Chinese Academy of Sciences, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences and Ministry of Water Conservancy, Chengdu 610041, China
    University of Chinese Academy of Sciences (UCAS), Beijing 100049, China)

  • Limei Deng

    (Laboratory of Mountain Surface Processes and Ecological Regulation, Chinese Academy of Sciences, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences and Ministry of Water Conservancy, Chengdu 610041, China
    University of Chinese Academy of Sciences (UCAS), Beijing 100049, China)

  • Xuan Wang

    (Laboratory of Mountain Surface Processes and Ecological Regulation, Chinese Academy of Sciences, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences and Ministry of Water Conservancy, Chengdu 610041, China
    University of Chinese Academy of Sciences (UCAS), Beijing 100049, China)

  • Rongyang Cui

    (Laboratory of Mountain Surface Processes and Ecological Regulation, Chinese Academy of Sciences, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences and Ministry of Water Conservancy, Chengdu 610041, China
    University of Chinese Academy of Sciences (UCAS), Beijing 100049, China)

  • Gangcai Liu

    (Laboratory of Mountain Surface Processes and Ecological Regulation, Chinese Academy of Sciences, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences and Ministry of Water Conservancy, Chengdu 610041, China)

Abstract
Healthy soils are vital for food production as 95% of global food production directly or indirectly depends on soils. To ensure the food security of the burgeoning world population, it is necessary to evaluate soil health (SH) with a potential soil health index (SHI). Although there are several reputable methods for SH assessment at present, the connotations of and evaluation methods for SH are still unclear and such indexes are targeted at specific stakeholders or problems. In this study, we reviewed the fundamental steps in current attempts to develop SHIs, SH assessment methods and proposed a unified SHI based on the priorities of stakeholders. The proposed approach was designed as “three sets of dual index systems”, including the soil function (i), nutrition (j), and output (k) index systems, as well as the current (C) and expected (E) values of the respective index systems. The indicators included in index-i, index-j, and index-k reflect the soil regulatory functions, nutrient status, and quality and quantity of the output, respectively. The E values are used as a reference for the C values, and the health status is obtained, by using the ratio (R) of C to E for the respective index systems and their degree of deviation from “1” (R-1). For any evaluated soil, the farther the number of attributes and their ratios deviate from “1”, the unhealthier it is. This approach can provide a unified and comprehensive SH assessment method by diagnosing the most significant, healthy as well as unhealthy indicators. This method can be applied easily, not only by scholars but also by farmers and land managers.

Suggested Citation

  • Zakir Hussain & Limei Deng & Xuan Wang & Rongyang Cui & Gangcai Liu, 2022. "A Review of Farmland Soil Health Assessment Methods: Current Status and a Novel Approach," Sustainability, MDPI, vol. 14(15), pages 1-17, July.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9300-:d:875173
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/15/9300/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/15/9300/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eanes, Francis R. & Singh, Ajay S. & Bulla, Brian R. & Ranjan, Pranay & Fales, Mary & Wickerham, Benjamin & Doran, Patrick J. & Prokopy, Linda S., 2019. "Crop advisers as conservation intermediaries: Perceptions and policy implications for relying on nontraditional partners to increase U.S. farmers’ adoption of soil and water conservation practices," Land Use Policy, Elsevier, vol. 81(C), pages 360-370.
    2. Fuqiang Dai & Zhiqiang Lv & Gangcai Liu, 2018. "Assessing Soil Quality for Sustainable Cropland Management Based on Factor Analysis and Fuzzy Sets: A Case Study in the Lhasa River Valley, Tibetan Plateau," Sustainability, MDPI, vol. 10(10), pages 1-17, September.
    3. Avanthi Deshani Igalavithana & Sang Soo Lee & Nabeel Khan Niazi & Young-Han Lee & Kye Hoon Kim & Jeong-Hun Park & Deok Hyun Moon & Yong Sik Ok, 2017. "Assessment of Soil Health in Urban Agriculture: Soil Enzymes and Microbial Properties," Sustainability, MDPI, vol. 9(2), pages 1-14, February.
    4. Maurício R Cherubin & Douglas L Karlen & Carlos E P Cerri & André L C Franco & Cássio A Tormena & Christian A Davies & Carlos C Cerri, 2016. "Soil Quality Indexing Strategies for Evaluating Sugarcane Expansion in Brazil," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-26, March.
    5. Atanu Mukherjee & Rattan Lal, 2014. "Comparison of Soil Quality Index Using Three Methods," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-15, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xigui Li & Qing Wu & Yujie Liu, 2023. "Spatiotemporal Changes of Cultivated Land System Health Based on PSR-VOR Model—A Case Study of the Two Lake Plains, China," IJERPH, MDPI, vol. 20(2), pages 1-28, January.
    2. José Manuel Mirás-Avalos & Pedro Marco & Sergio Sánchez & Beatriz Bielsa & María José Rubio Cabetas & Vicente González, 2022. "Soil Quality Index of Young and Differently Managed Almond Orchards under Mediterranean Conditions," Sustainability, MDPI, vol. 14(22), pages 1-14, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laís Coutinho Zayas Jimenez & Hermano Melo Queiroz & Maurício Roberto Cherubin & Tiago Osório Ferreira, 2022. "Applying the Soil Management Assessment Framework (SMAF) to Assess Mangrove Soil Quality," Sustainability, MDPI, vol. 14(5), pages 1-12, March.
    2. Dang, Hai-Anh & Carletto, Calogero & Gourlay, Sydney & Abanokova, Kseniya, 2024. "Addressing Soil Quality Data Gaps with Imputation: Evidence from Ethiopia and Uganda," GLO Discussion Paper Series 1445, Global Labor Organization (GLO).
    3. Qianchun Dai & Kequn Cheng, 2022. "What Drives the Adoption of Agricultural Green Production Technologies? An Extension of TAM in Agriculture," Sustainability, MDPI, vol. 14(21), pages 1-18, November.
    4. Turetta, Ana Paula Dias & Kuyper, Thomas & Malheiros, Tadeu Fabrício & Coutinho, Heitor Luiz da Costa, 2017. "A framework proposal for sustainability assessment of sugarcane in Brazil," Land Use Policy, Elsevier, vol. 68(C), pages 597-603.
    5. Paige Seitz & Robert Strong & Steve Hague & Theresa P. Murphrey, 2022. "Evaluating Agricultural Extension Agent’s Sustainable Cotton Land Production Competencies: Subject Matter Discrepancies Restricting Farmers’ Information Adoption," Land, MDPI, vol. 11(11), pages 1-17, November.
    6. Zeyu Shi & Zhongke Bai & Donggang Guo & Meijing Chen, 2021. "Develop a Soil Quality Index to Study the Results of Black Locust on Soil Quality below Different Allocation Patterns," Land, MDPI, vol. 10(8), pages 1-16, July.
    7. Maurício Roberto Cherubin & João Luís Nunes Carvalho & Carlos Eduardo Pellegrino Cerri & Luiz Augusto Horta Nogueira & Glaucia Mendes Souza & Heitor Cantarella, 2021. "Land Use and Management Effects on Sustainable Sugarcane-Derived Bioenergy," Land, MDPI, vol. 10(1), pages 1-24, January.
    8. Suman Chatterjee, 2024. "Site suitability analysis for phytoremediation implementation: A case study of Barjora and Durgapur Industrial areas, West Bengal, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(8), pages 20027-20047, August.
    9. Mohamed K. Abdel-Fattah & Elsayed Said Mohamed & Enas M. Wagdi & Sahar A. Shahin & Ali A. Aldosari & Rosa Lasaponara & Manal A. Alnaimy, 2021. "Quantitative Evaluation of Soil Quality Using Principal Component Analysis: The Case Study of El-Fayoum Depression Egypt," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
    10. Park, Dojin, 2021. "The Valuation of Soil Health Improvements and Ecosystem Services among Crop Producers in the U.S," 2021 Annual Meeting, August 1-3, Austin, Texas 314032, Agricultural and Applied Economics Association.
    11. Pushpanjali & Josily Samuel & Prabhat Kumar Pankaj & Konda Srinivas Reddy & Karunakaran Karthikeyan & Ardha Gopala Krishna Reddy & Jagriti Rohit & Kotha Sammi Reddy & Vinod Kumar Singh, 2023. "Fodder Grass Strips: An Affordable Technology for Sustainable Rainfed Agriculture in India," Agriculture, MDPI, vol. 13(2), pages 1-14, January.
    12. David B Lobell & George Azzari & Marshall Burke & Sydney Gourlay & Zhenong Jin & Talip Kilic & Siobhan Murray, 2020. "Eyes in the Sky, Boots on the Ground: Assessing Satellite‐ and Ground‐Based Approaches to Crop Yield Measurement and Analysis," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(1), pages 202-219, January.
    13. Nontobeko Gloria Maphuhla & Francis Bayo Lewu & Opeoluwa Oyehan Oyedeji, 2020. "The Effects of Physicochemical Parameters on Analysed Soil Enzyme Activity from Alice Landfill Site," IJERPH, MDPI, vol. 18(1), pages 1-15, December.
    14. Gourlay, Sydney & Kilic, Talip & Lobell, David B., 2019. "A new spin on an old debate: Errors in farmer-reported production and their implications for inverse scale - Productivity relationship in Uganda," Journal of Development Economics, Elsevier, vol. 141(C).
    15. Salman A. H. Selmy & Salah H. Abd Al-Aziz & Raimundo Jiménez-Ballesta & Francisco Jesús García-Navarro & Mohamed E. Fadl, 2021. "Soil Quality Assessment Using Multivariate Approaches: A Case Study of the Dakhla Oasis Arid Lands," Land, MDPI, vol. 10(10), pages 1-22, October.
    16. Collins-Sowah, Peron A. & Henning, Christian H. C. A., 2019. "Risk management and its implications on household incomes," Working Papers of Agricultural Policy WP2019-05, University of Kiel, Department of Agricultural Economics, Chair of Agricultural Policy.
    17. Maurício R Cherubin & Douglas L Karlen & Carlos E P Cerri & André L C Franco & Cássio A Tormena & Christian A Davies & Carlos C Cerri, 2016. "Soil Quality Indexing Strategies for Evaluating Sugarcane Expansion in Brazil," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-26, March.
    18. Stevens, Andrew W., 2018. "Review: The economics of soil health," Food Policy, Elsevier, vol. 80(C), pages 1-9.
    19. Faridi, Amir Ali & Kavoosi-Kalashami, Mohammad & Bilali, Hamid El, 2020. "Attitude components affecting adoption of soil and water conservation measures by paddy farmers in Rasht County, Northern Iran," Land Use Policy, Elsevier, vol. 99(C).
    20. Tian, Guangli & Qiu, Husen & Wang, Yuting & Zhou, Xinguo & Li, Dongwei, 2022. "Short-term legacy effects of rice season irrigation and fertilization on the soil bacterial community of the subsequent wheat season in a rice-wheat rotation system," Agricultural Water Management, Elsevier, vol. 263(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9300-:d:875173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.