[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i10p1851-d948001.html
   My bibliography  Save this article

Spatial–Temporal Change in Paddy Field and Dryland in Different Topographic Gradients: A Case Study of China during 1990–2020

Author

Listed:
  • Shuai Xie

    (College of Geography and Environment, Shandong Normal University, Jinan 250358, China)

  • Guanyi Yin

    (College of Geography and Environment, Shandong Normal University, Jinan 250358, China)

  • Wei Wei

    (College of Geography and Environment, Shandong Normal University, Jinan 250358, China)

  • Qingzhi Sun

    (College of Geography and Environment, Shandong Normal University, Jinan 250358, China)

  • Zhan Zhang

    (College of Geography and Environment, Shandong Normal University, Jinan 250358, China)

Abstract
As a country with a vast area and complex terrain, the differentiation between paddy field and dryland under different topographic gradients in China is difficult. Based on a land-use grid data set with an accuracy of 1 km, this study applied the Topographic Potential Index and used land-use transition matrices and landscape analysis to compare the change in dryland and paddy field in China from 1990 to 2020 at different elevations, slopes, and slope aspects. The results indicate that paddy field and dryland were mostly distributed in areas with better photothermal conditions. However, in recent years, the paddy field and dryland on the “sunny” slope decreased. Specifically, the area of paddy field and dryland on the southeast, south, and southwest slopes decreased, while they increased on the northwest, north, and northeast slopes. From 1990 to 2020, land conversion among paddy field, dryland, and other land use was mostly concentrated in the third ladder (<500 m elevation) of China. However, the changes in paddy field and dryland have now become active on the second ladder of China. Moreover, the change from other land to dryland on the second ladder accounted for nearly 50% of the country’s change from other land to dryland. Paddy fields and drylands in areas with low elevation and low slopes were reduced, whereas those with higher elevation and higher slopes increased, indicating that the arable land in mountainous areas increased. This indicates that the topographic conditions of arable land that become worse may aggravate soil erosion in the planting process. The landscape fragmentation of paddy field and dryland increased. Compared with paddy field, the dryland was more aggregated, the shape was more complex, and the land plots were more fragmented. As a result, paddy field and dryland show significant differences in their spatial–temporal pattern, landscape characteristics, and land-use changes, and these results can provide an important reference for the sustainable utilization of arable land resources.

Suggested Citation

  • Shuai Xie & Guanyi Yin & Wei Wei & Qingzhi Sun & Zhan Zhang, 2022. "Spatial–Temporal Change in Paddy Field and Dryland in Different Topographic Gradients: A Case Study of China during 1990–2020," Land, MDPI, vol. 11(10), pages 1-20, October.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:10:p:1851-:d:948001
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/10/1851/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/10/1851/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Luo & Liu, Zhenjie & Gong, Jianzhou & Wang, Lu & Hu, Yueming, 2019. "Quantifying the amount, heterogeneity, and pattern of farmland: Implications for China’s requisition-compensation balance of farmland policy," Land Use Policy, Elsevier, vol. 81(C), pages 256-266.
    2. Zhou, Yang & Li, Xunhuan & Liu, Yansui, 2021. "Cultivated land protection and rational use in China," Land Use Policy, Elsevier, vol. 106(C).
    3. Wenfeng Chi & Yuanyuan Zhao & Wenhui Kuang & Tao Pan & Tu Ba & Jinshen Zhao & Liang Jin & Sisi Wang, 2021. "Impact of Cropland Evolution on Soil Wind Erosion in Inner Mongolia of China," Land, MDPI, vol. 10(6), pages 1-16, June.
    4. Zhou, Jian & Cao, Xiaoshu, 2020. "What is the policy improvement of China’s land consolidation? Evidence from completed land consolidation projects in Shaanxi Province," Land Use Policy, Elsevier, vol. 99(C).
    5. Xinliang Xu & Liang Wang & Hongyan Cai & Luyao Wang & Luo Liu & Hongzhi Wang, 2017. "The influences of spatiotemporal change of cultivated land on food crop production potential in China," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(3), pages 485-495, June.
    6. Gong, Yuling & Li, Jintao & Li, Yixue, 2020. "Spatiotemporal characteristics and driving mechanisms of arable land in the Beijing-Tianjin-Hebei region during 1990-2015," Socio-Economic Planning Sciences, Elsevier, vol. 70(C).
    7. Zhou, Yang & Li, Yamei & Xu, Chenchen, 2020. "Land consolidation and rural revitalization in China: Mechanisms and paths," Land Use Policy, Elsevier, vol. 91(C).
    8. Weihua Zhang & Chaofu Wei & Jia Zhou, 2010. "Optimal Allocation of Rainfall in the Sichuan Basin, Southwest China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(15), pages 4529-4549, December.
    9. Chen, Lili & Zhao, Hongsheng & Song, Ge & Liu, Ye, 2021. "Optimization of cultivated land pattern for achieving cultivated land system security: A case study in Heilongjiang Province, China," Land Use Policy, Elsevier, vol. 108(C).
    10. Meijing Chen & Zhongke Bai & Qingri Wang & Zeyu Shi, 2021. "Habitat Quality Effect and Driving Mechanism of Land Use Transitions: A Case Study of Henan Water Source Area of the Middle Route of the South-to-North Water Transfer Project," Land, MDPI, vol. 10(8), pages 1-20, July.
    11. Liu, Moucheng & Yang, Lun & Min, Qingwen & Bai, Yangying, 2018. "Eco-compensation standards for agricultural water conservation: A case study of the paddy land-to-dry land program in China," Agricultural Water Management, Elsevier, vol. 204(C), pages 192-197.
    12. Yi Lou & Guanyi Yin & Yue Xin & Shuai Xie & Guanghao Li & Shuang Liu & Xiaoming Wang, 2021. "Recessive Transition Mechanism of Arable Land Use Based on the Perspective of Coupling Coordination of Input–Output: A Case Study of 31 Provinces in China," Land, MDPI, vol. 10(1), pages 1-27, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuchang Li & Wei Song, 2023. "Research Progress in Land Consolidation and Rural Revitalization: Current Status, Characteristics, Regional Differences, and Evolution Laws," Land, MDPI, vol. 12(1), pages 1-24, January.
    2. Yan Sun & Xiaojun Song & Jing Ma & Haochen Yu & Xiaoping Ge & Gang-Jun Liu & Fu Chen, 2021. "Assessing the Effectiveness for Achieving Policy Objectives of Land Consolidation in China: Evidence from Project Practices in Jiangsu Province from 2001 to 2017," Sustainability, MDPI, vol. 13(24), pages 1-20, December.
    3. Jian Zhou & Chao Li & Xiaotong Chu & Chenying Luo, 2022. "Is Cultivated Land Increased by Land Consolidation Sustainably Used in Mountainous Areas?," Land, MDPI, vol. 11(12), pages 1-14, December.
    4. Xiaowei Yao & Ting Luo & Yingjun Xu & Wanxu Chen & Jie Zeng, 2022. "Prediction of Spatiotemporal Changes in Sloping Cropland in the Middle Reaches of the Yangtze River Region under Different Scenarios," IJERPH, MDPI, vol. 20(1), pages 1-22, December.
    5. Jian, Yuqing & Liu, Zhengjia & Gong, Jianzhou, 2022. "Response of landscape dynamics to socio-economic development and biophysical setting across the farming-pastoral ecotone of northern China and its implications for regional sustainable land management," Land Use Policy, Elsevier, vol. 122(C).
    6. Yin, Qiqi & Sui, Xueyan & Ye, Bei & Zhou, Yujie & Li, Chengqiang & Zou, Mengmeng & Zhou, Shenglu, 2022. "What role does land consolidation play in the multi-dimensional rural revitalization in China? A research synthesis," Land Use Policy, Elsevier, vol. 120(C).
    7. Sun, Xueqing & Xiang, Pengcheng & Cong, Kexin, 2023. "Research on early warning and control measures for arable land resource security," Land Use Policy, Elsevier, vol. 128(C).
    8. Li, Xiaoliang & Wu, Kening & Yang, Qijun & Hao, Shiheng & Feng, Zhe & Ma, Jinliang, 2023. "Quantitative assessment of cultivated land use intensity in Heilongjiang Province, China, 2001–2015," Land Use Policy, Elsevier, vol. 125(C).
    9. Mengba Liu & Anlu Zhang & Xiong Zhang & Yanfei Xiong, 2022. "Research on the Game Mechanism of Cultivated Land Ecological Compensation Standards Determination: Based on the Empirical Analysis of the Yangtze River Economic Belt, China," Land, MDPI, vol. 11(9), pages 1-29, September.
    10. Zhou, Yang & Zhong, Zhen & Cheng, Guoqiang, 2023. "Cultivated land loss and construction land expansion in China: Evidence from national land surveys in 1996, 2009 and 2019," Land Use Policy, Elsevier, vol. 125(C).
    11. Chen, Hang & Meng, Fei & Yu, Zhenning & Tan, Yongzhong, 2022. "Spatial–temporal characteristics and influencing factors of farmland expansion in different agricultural regions of Heilongjiang Province, China," Land Use Policy, Elsevier, vol. 115(C).
    12. Guodong Huang & Xiaoqiang Shen & Xiaobin Zhang & Wei Gu, 2023. "Quantitative Evaluation of China’s Central-Level Land Consolidation Policies in the Past Forty Years Based on the Text Analysis and PMC-Index Model," Land, MDPI, vol. 12(9), pages 1-30, September.
    13. Hualou Long & Xiangbin Kong & Shougeng Hu & Yurui Li, 2021. "Land Use Transitions under Rapid Urbanization: A Perspective from Developing China," Land, MDPI, vol. 10(9), pages 1-9, September.
    14. Xuejiao Fan & Bin Quan & Zhiwei Deng & Jianxiong Liu, 2022. "Study on Land Use Changes in Changsha–Zhuzhou–Xiangtan under the Background of Cultivated Land Protection Policy," Sustainability, MDPI, vol. 14(22), pages 1-17, November.
    15. Li, Hanbing & Jin, Xiaobin & McCormick, Barbara Prack & Tittonell, Pablo & Liu, Jing & Han, Bo & Sun, Rui & Zhou, Yinkang, 2023. "Analysis of the contribution of land consolidation to sustainable poverty alleviation under various natural conditions," Land Use Policy, Elsevier, vol. 133(C).
    16. Xi Wu & Yajuan Wang & Hongbo Zhu, 2022. "Does Economic Growth Lead to an Increase in Cultivated Land Pressure? Evidence from China," Land, MDPI, vol. 11(9), pages 1-19, September.
    17. Houtian Tang & Yuanlai Wu & Jinxiu Chen & Liuxin Deng & Minjie Zeng, 2022. "How Does Change in Rural Residential Land Affect Cultivated Land Use Efficiency? An Empirical Study Based on 42 Cities in the Middle Reaches of the Yangtze River," Land, MDPI, vol. 11(12), pages 1-20, December.
    18. Xuan Luo & Zhaomin Tong & Yifan Xie & Rui An & Zhaochen Yang & Yanfang Liu, 2022. "Land Use Change under Population Migration and Its Implications for Human–Land Relationship," Land, MDPI, vol. 11(6), pages 1-22, June.
    19. Jichang Cui & Yanbo Qu & Yan Li & Lingyun Zhan & Guancheng Guo & Xiaozhen Dong, 2022. "Reconstruction of Rural Settlement Patterns in China: The Role of Land Consolidation," Land, MDPI, vol. 11(10), pages 1-20, October.
    20. Xiaobing Sun & Quanfeng Li & Xiangbin Kong & Weimin Cai & Bailin Zhang & Ming Lei, 2023. "Spatial Characteristics and Obstacle Factors of Cultivated Land Quality in an Intensive Agricultural Region of the North China Plain," Land, MDPI, vol. 12(8), pages 1-23, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:10:p:1851-:d:948001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.