[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/gam/jecnmx/v6y2018i1p8-d132670.html
   My bibliography  Save this article

Lasso Maximum Likelihood Estimation of Parametric Models with Singular Information Matrices

Author

Listed:
  • Fei Jin

    (School of Economics, Shanghai University of Finance and Economics, Shanghai 200433, China
    Key Laboratory of Mathematical Economics (SUFE), Ministry of Education, Shanghai 200433, China)

  • Lung-fei Lee

    (Department of Economics, The Ohio State University, Columbus, OH 43210, USA)

Abstract
An information matrix of a parametric model being singular at a certain true value of a parameter vector is irregular. The maximum likelihood estimator in the irregular case usually has a rate of convergence slower than the n -rate in a regular case. We propose to estimate such models by the adaptive lasso maximum likelihood and propose an information criterion to select the involved tuning parameter. We show that the penalized maximum likelihood estimator has the oracle properties. The method can implement model selection and estimation simultaneously and the estimator always has the usual n -rate of convergence.

Suggested Citation

  • Fei Jin & Lung-fei Lee, 2018. "Lasso Maximum Likelihood Estimation of Parametric Models with Singular Information Matrices," Econometrics, MDPI, vol. 6(1), pages 1-24, February.
  • Handle: RePEc:gam:jecnmx:v:6:y:2018:i:1:p:8-:d:132670
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2225-1146/6/1/8/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2225-1146/6/1/8/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lee, Lung-Fei & Chesher, Andrew, 1986. "Specification testing when score test statistics are identically zero," Journal of Econometrics, Elsevier, vol. 31(2), pages 121-149, March.
    2. Wang, Hansheng & Leng, Chenlei, 2008. "A note on adaptive group lasso," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5277-5286, August.
    3. Sargan, J D, 1983. "Identification and Lack of Identification," Econometrica, Econometric Society, vol. 51(6), pages 1605-1633, November.
    4. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    5. Hansheng Wang & Bo Li & Chenlei Leng, 2009. "Shrinkage tuning parameter selection with a diverging number of parameters," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 671-683, June.
    6. Lee, Lung-Fei, 1993. "Asymptotic Distribution of the Maximum Likelihood Estimator for a Stochastic Frontier Function Model with a Singular Information Matrix," Econometric Theory, Cambridge University Press, vol. 9(3), pages 413-430, June.
    7. Hansheng Wang & Runze Li & Chih-Ling Tsai, 2007. "Tuning parameter selectors for the smoothly clipped absolute deviation method," Biometrika, Biometrika Trust, vol. 94(3), pages 553-568.
    8. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    9. Zhang, Yiyun & Li, Runze & Tsai, Chih-Ling, 2010. "Regularization Parameter Selections via Generalized Information Criterion," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 312-323.
    10. Rothenberg, Thomas J, 1971. "Identification in Parametric Models," Econometrica, Econometric Society, vol. 39(3), pages 577-591, May.
    11. Donald W. K. Andrews, 1999. "Estimation When a Parameter Is on a Boundary," Econometrica, Econometric Society, vol. 67(6), pages 1341-1384, November.
    12. Quandt, Richard E, 1978. "Tests of the Equilibrium vs. Disequilibrium Hypotheses," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 19(2), pages 435-452, June.
    13. Goldfelfd, Stephen M. & Quandt, Richard E., 1975. "Estimation in a disequilibrium model and the value of information," Journal of Econometrics, Elsevier, vol. 3(4), pages 325-348, November.
    14. Wang, Hansheng & Leng, Chenlei, 2007. "Unified LASSO Estimation by Least Squares Approximation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1039-1048, September.
    15. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    16. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Yuan & McMahan, Christopher S. & Wang, Yu-Bo & Ouyang, Yuyuan, 2024. "Estimation of l0 norm penalized models: A statistical treatment," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).
    2. George Karabatsos, 2023. "Approximate Bayesian computation using asymptotically normal point estimates," Computational Statistics, Springer, vol. 38(2), pages 531-568, June.
    3. Woraphon Yamaka & Xuefeng Zhang & Paravee Maneejuk, 2021. "Analyzing the Influence of Transportations on Chinese Inbound Tourism: Markov Switching Penalized Regression Approaches," Mathematics, MDPI, vol. 9(5), pages 1-23, March.
    4. Sida Peng, 2019. "Heterogeneous Endogenous Effects in Networks," Papers 1908.00663, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Fei & Lee, Lung-fei, 2018. "Irregular N2SLS and LASSO estimation of the matrix exponential spatial specification model," Journal of Econometrics, Elsevier, vol. 206(2), pages 336-358.
    2. Fan, Rui & Lee, Ji Hyung & Shin, Youngki, 2023. "Predictive quantile regression with mixed roots and increasing dimensions: The ALQR approach," Journal of Econometrics, Elsevier, vol. 237(2).
    3. Ping Zeng & Yongyue Wei & Yang Zhao & Jin Liu & Liya Liu & Ruyang Zhang & Jianwei Gou & Shuiping Huang & Feng Chen, 2014. "Variable selection approach for zero-inflated count data via adaptive lasso," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(4), pages 879-894, April.
    4. Qian, Junhui & Su, Liangjun, 2016. "Shrinkage estimation of common breaks in panel data models via adaptive group fused Lasso," Journal of Econometrics, Elsevier, vol. 191(1), pages 86-109.
    5. Zhixuan Fu & Chirag R. Parikh & Bingqing Zhou, 2017. "Penalized variable selection in competing risks regression," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(3), pages 353-376, July.
    6. Bang, Sungwan & Jhun, Myoungshic, 2012. "Simultaneous estimation and factor selection in quantile regression via adaptive sup-norm regularization," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 813-826.
    7. Mehrabani, Ali, 2023. "Estimation and identification of latent group structures in panel data," Journal of Econometrics, Elsevier, vol. 235(2), pages 1464-1482.
    8. Lu, Xun & Su, Liangjun, 2016. "Shrinkage estimation of dynamic panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 190(1), pages 148-175.
    9. Hirose, Kei & Tateishi, Shohei & Konishi, Sadanori, 2013. "Tuning parameter selection in sparse regression modeling," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 28-40.
    10. Diego Vidaurre & Concha Bielza & Pedro Larrañaga, 2013. "A Survey of L1 Regression," International Statistical Review, International Statistical Institute, vol. 81(3), pages 361-387, December.
    11. Karsten Schweikert, 2022. "Oracle Efficient Estimation of Structural Breaks in Cointegrating Regressions," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(1), pages 83-104, January.
    12. Lee, Eun Ryung & Park, Byeong U., 2012. "Sparse estimation in functional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 1-17.
    13. Kaixu Yang & Tapabrata Maiti, 2022. "Ultrahigh‐dimensional generalized additive model: Unified theory and methods," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 917-942, September.
    14. Hao, Meiling & Lin, Yunyuan & Zhao, Xingqiu, 2016. "A relative error-based approach for variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 250-262.
    15. Lian, Heng, 2014. "Semiparametric Bayesian information criterion for model selection in ultra-high dimensional additive models," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 304-310.
    16. Yanxin Wang & Qibin Fan & Li Zhu, 2018. "Variable selection and estimation using a continuous approximation to the $$L_0$$ L 0 penalty," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(1), pages 191-214, February.
    17. Karsten Schweikert, 2020. "Oracle Efficient Estimation of Structural Breaks in Cointegrating Regressions," Papers 2001.07949, arXiv.org, revised Apr 2021.
    18. Eduardo F. Mendes & Gabriel J. P. Pinto, 2023. "Generalized Information Criteria for Structured Sparse Models," Papers 2309.01764, arXiv.org.
    19. Tang, Yanlin & Wang, Huixia Judy & Zhu, Zhongyi, 2013. "Variable selection in quantile varying coefficient models with longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 435-449.
    20. Sunghoon Kwon & Jeongyoun Ahn & Woncheol Jang & Sangin Lee & Yongdai Kim, 2017. "A doubly sparse approach for group variable selection," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(5), pages 997-1025, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jecnmx:v:6:y:2018:i:1:p:8-:d:132670. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.