[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i3p1686-1700.html
   My bibliography  Save this article

Improved semiparametric estimation of the proportional rate model with recurrent event data

Author

Listed:
  • Ming‐Yueh Huang
  • Chiung‐Yu Huang
Abstract
Owing to its robustness properties, marginal interpretations, and ease of implementation, the pseudo‐partial likelihood method proposed in the seminal papers of Pepe and Cai and Lin et al. has become the default approach for analyzing recurrent event data with Cox‐type proportional rate models. However, the construction of the pseudo‐partial score function ignores the dependency among recurrent events and thus can be inefficient. An attempt to investigate the asymptotic efficiency of weighted pseudo‐partial likelihood estimation found that the optimal weight function involves the unknown variance–covariance process of the recurrent event process and may not have closed‐form expression. Thus, instead of deriving the optimal weights, we propose to combine a system of pre‐specified weighted pseudo‐partial score equations via the generalized method of moments and empirical likelihood estimation. We show that a substantial efficiency gain can be easily achieved without imposing additional model assumptions. More importantly, the proposed estimation procedures can be implemented with existing software. Theoretical and numerical analyses show that the empirical likelihood estimator is more appealing than the generalized method of moments estimator when the sample size is sufficiently large. An analysis of readmission risk in colorectal cancer patients is presented to illustrate the proposed methodology.

Suggested Citation

  • Ming‐Yueh Huang & Chiung‐Yu Huang, 2023. "Improved semiparametric estimation of the proportional rate model with recurrent event data," Biometrics, The International Biometric Society, vol. 79(3), pages 1686-1700, September.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:3:p:1686-1700
    DOI: 10.1111/biom.13788
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13788
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13788?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Maja Miloslavsky & Sündüz Keleş & Mark J. van der Laan & Steve Butler, 2004. "Recurrent events analysis in the presence of time‐dependent covariates and dependent censoring," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 239-257, February.
    2. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    3. Whitney K. Newey & Richard J. Smith, 2004. "Higher Order Properties of Gmm and Generalized Empirical Likelihood Estimators," Econometrica, Econometric Society, vol. 72(1), pages 219-255, January.
    4. Brown, Bryan W & Newey, Whitney K, 2002. "Generalized Method of Moments, Efficient Bootstrapping, and Improved Inference," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 507-517, October.
    5. Hansen, Lars Peter & Heaton, John & Yaron, Amir, 1996. "Finite-Sample Properties of Some Alternative GMM Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 262-280, July.
    6. D. Y. Lin & L. J. Wei & I. Yang & Z. Ying, 2000. "Semiparametric regression for the mean and rate functions of recurrent events," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 711-730.
    7. Zeng, Donglin & Lin, D.Y., 2007. "Semiparametric Transformation Models With Random Effects for Recurrent Events," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 167-180, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Parente, Paulo M.D.C. & Smith, Richard J., 2011. "Gel Methods For Nonsmooth Moment Indicators," Econometric Theory, Cambridge University Press, vol. 27(1), pages 74-113, February.
    2. Giuseppe Ragusa, 2011. "Minimum Divergence, Generalized Empirical Likelihoods, and Higher Order Expansions," Econometric Reviews, Taylor & Francis Journals, vol. 30(4), pages 406-456, August.
    3. La Vecchia, Davide & Moor, Alban & Scaillet, Olivier, 2023. "A higher-order correct fast moving-average bootstrap for dependent data," Journal of Econometrics, Elsevier, vol. 235(1), pages 65-81.
    4. Todd, Prono, 2009. "Simple, Skewness-Based GMM Estimation of the Semi-Strong GARCH(1,1) Model," MPRA Paper 30994, University Library of Munich, Germany, revised 30 Jul 2011.
    5. Xuexin Wang, 2020. "A new class of tests for overidentifying restrictions in moment condition models," Econometric Reviews, Taylor & Francis Journals, vol. 39(5), pages 495-509, May.
    6. Joachim Inkmann, 2010. "Estimating Firm Size Elasticities of Product and Process R&D," Economica, London School of Economics and Political Science, vol. 77(306), pages 384-402, April.
    7. Almeida, Caio & Garcia, René, 2012. "Assessing misspecified asset pricing models with empirical likelihood estimators," Journal of Econometrics, Elsevier, vol. 170(2), pages 519-537.
    8. Smith, Richard J., 2011. "Gel Criteria For Moment Condition Models," Econometric Theory, Cambridge University Press, vol. 27(6), pages 1192-1235, December.
    9. Smith, Richard J., 2007. "Efficient information theoretic inference for conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 138(2), pages 430-460, June.
    10. Seojeong Lee, 2018. "Asymptotic Refinements of a Misspecification-Robust Bootstrap for Generalized Empirical Likelihood Estimators," Papers 1806.00953, arXiv.org, revised Jun 2018.
    11. Prosper Dovonon, 2016. "Large Sample Properties of the Three-Step Euclidean Likelihood Estimators under Model Misspecification," Econometric Reviews, Taylor & Francis Journals, vol. 35(4), pages 465-514, April.
    12. Hahn, Jinyong & Newey, Whitney K. & Smith, Richard J., 2014. "Neglected heterogeneity in moment condition models," Journal of Econometrics, Elsevier, vol. 178(P1), pages 86-100.
    13. Lee, Seojeong, 2016. "Asymptotic refinements of a misspecification-robust bootstrap for GEL estimators," Journal of Econometrics, Elsevier, vol. 192(1), pages 86-104.
    14. Guggenberger, Patrik & Ramalho, Joaquim J.S. & Smith, Richard J., 2012. "GEL statistics under weak identification," Journal of Econometrics, Elsevier, vol. 170(2), pages 331-349.
    15. Ramalho Joaquim J.S., 2005. "Small Sample Bias of Alternative Estimation Methods for Moment Condition Models: Monte Carlo Evidence for Covariance Structures," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(1), pages 1-20, March.
    16. Susanne M. Schennach, 2007. "Point estimation with exponentially tilted empirical likelihood," Papers 0708.1874, arXiv.org.
    17. Richard Smith, 2005. "Local GEL methods for conditional moment restrictions," CeMMAP working papers CWP15/05, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    18. Hwang, Jungbin & Valdés, Gonzalo, 2023. "Finite-sample corrected inference for two-step GMM in time series," Journal of Econometrics, Elsevier, vol. 234(1), pages 327-352.
    19. Chang, Jinyuan & Chen, Song Xi & Chen, Xiaohong, 2015. "High dimensional generalized empirical likelihood for moment restrictions with dependent data," Journal of Econometrics, Elsevier, vol. 185(1), pages 283-304.
    20. Whitney K. Newey & Frank Windmeijer, 2005. "GMM with many weak moment conditions," CeMMAP working papers CWP18/05, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:3:p:1686-1700. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.