[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/ags/agreko/347690.html
   My bibliography  Save this article

Technical efficiency of smallholder maize production in Zambia: a stochastic meta-frontier approach

Author

Listed:
  • Ng’ombe, John N.
Abstract
We determine and compare technical efficiency (TE), technology gap ratios (TGRs) and meta-frontier technical efficiency (MTEs) of maize production between regions using nationally representative panel data collected from 4001 smallholder farm households in Zambia. We estimate the stochastic meta-frontier and region-specific stochastic frontiers based on the ‘true random effects’ framework. Our results show variations in efficiency measures and that smallholder maize production is characterised by increasing returns to scale across all regions, which clearly suggest maize farmers to reduce their average long-term costs by increasing their production scale. We find that some regions are on average more technically efficient than others while those with TE values exceeding 90 per cent operate further below their potential output than those with moderate TE values. Similarly, farm households from regions whose mean TE values are about 90 per cent employ inferior farming techniques to those employed by farmers from regions whose mean TE values are lower. This is in part due to industry-wide specific environmental factors. Most importantly, we find no region to have maize farmers that adopt the most advanced techniques. Results further indicate that all provinces have had either lower or higher TEs, TGRs and MTEs in one period than in another. Generally, our results point to the need to promote superior techniques that would withstand industry-wide specific environmental factors. While it is not possible to find the many reasons for wide variations in TEs, TGRs, and MTEs across regions and time, our results make novel contributions to literature.

Suggested Citation

  • Ng’ombe, John N., 2017. "Technical efficiency of smallholder maize production in Zambia: a stochastic meta-frontier approach," Agrekon, Agricultural Economics Association of South Africa (AEASA), vol. 56(3), December.
  • Handle: RePEc:ags:agreko:347690
    DOI: 10.22004/ag.econ.347690
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/347690/files/Technical%20efficiency%20of%20smallholder%20maize%20production%20in%20Zambia%20%20a%20stochastic%20meta-frontier%20approach.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.347690?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yujiro Hayami, 1969. "Sources of Agricultural Productivity Gap Among Selected Countries," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 51(3), pages 564-575.
    2. Mushunje, A. & Belete, A., 2001. "Efficiency of Zimbabwean Small Scale Communal Farmers," Agrekon, Agricultural Economics Association of South Africa (AEASA), vol. 40(3), September.
    3. Ngoma, Hambulo & Mason, Nicole & Sitko, Nicholas, 2015. "Does minimum tillage with planting basins or ripping raise maize yields? Meso-panel data evidence from Zambia," 2015 Conference, August 9-14, 2015, Milan, Italy 212530, International Association of Agricultural Economists.
    4. George Battese & D. Rao & Christopher O'Donnell, 2004. "A Metafrontier Production Function for Estimation of Technical Efficiencies and Technology Gaps for Firms Operating Under Different Technologies," Journal of Productivity Analysis, Springer, vol. 21(1), pages 91-103, January.
    5. Federico Belotti & Silvio Daidone & Giuseppe Ilardi & Vincenzo Atella, 2013. "Stochastic frontier analysis using Stata," Stata Journal, StataCorp LP, vol. 13(4), pages 718-758, December.
    6. Willam Greene, 2005. "Fixed and Random Effects in Stochastic Frontier Models," Journal of Productivity Analysis, Springer, vol. 23(1), pages 7-32, January.
    7. Abdul Nafeo Abdulai & Awudu Abdulai, 2016. "Allocative and scale efficiency among maize farmers in Zambia: a zero efficiency stochastic frontier approach," Applied Economics, Taylor & Francis Journals, vol. 48(55), pages 5364-5378, November.
    8. Cornwell, Christopher & Schmidt, Peter & Sickles, Robin C., 1990. "Production frontiers with cross-sectional and time-series variation in efficiency levels," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 185-200.
    9. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    10. Alene, AD & Hassan, RM, 2003. "The Determinants Of Farm-Level Technical Efficiency Among Adopters Of Improved Maize Production Technology In Western Ethiopia," Agrekon, Agricultural Economics Association of South Africa (AEASA), vol. 42(1).
    11. Christopher O’Donnell & D. Rao & George Battese, 2008. "Metafrontier frameworks for the study of firm-level efficiencies and technology ratios," Empirical Economics, Springer, vol. 34(2), pages 231-255, March.
    12. Mulungu, Kelvin & Tembo, Gelson & Kabwe, Stephen, 2012. "An Economic Analysis of Precision Application of Climate at Reduced Rates," 2012 Eighth AFMA Congress, November 25-29, 2012, Nairobi, Kenya 159407, African Farm Management Association (AFMA).
    13. Huang, Tai-Hsin & Chiang, Dien-Lin & Tsai, Chao-Min, 2015. "Applying the New Metafrontier Directional Distance Function to Compare Banking Efficiencies in Central and Eastern European Countries," Economic Modelling, Elsevier, vol. 44(C), pages 188-199.
    14. Vernon W. Ruttan, 1971. "Technology and the Environment," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 53(5), pages 707-717.
    15. repec:ags:ijag24:347282 is not listed on IDEAS
    16. John N. Ng’ombe & Thomson H. Kalinda & Gelson Tembo, 2017. "Does adoption of conservation farming practices result in increased crop revenue? Evidence from Zambia," Agrekon, Taylor & Francis Journals, vol. 56(2), pages 205-221, April.
    17. Chapoto, Antony & Haggblade, Steven & Hichaambwa, Munguzwe & Kabwe, Stephen & Longabaugh, Steven & Sitko, Nicholas J. & Tschirley, David L., 2012. "Agricultural Transformation in Zambia: Alternative Institutional Models for Accelerating Agricultural Productivity Growth, and Commercialization," Food Security Collaborative Working Papers 132339, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    18. Ligia Alba Melo-Becerra & Antonio José Orozco-Gallo, 2017. "Technical efficiency for Colombian small crop and livestock farmers: A stochastic metafrontier approach for different production systems," Journal of Productivity Analysis, Springer, vol. 47(1), pages 1-16, February.
    19. Xiaoheng Zhang & Feng Chu & Xiaohua Yu & Yingheng Zhou & Xu Tian & Xianhui Geng & Jinyang Yang, 2017. "Changing Structure and Sustainable Development for China’s Hog Sector," Sustainability, MDPI, vol. 9(1), pages 1-15, January.
    20. Li, Hong-Zhou & Kopsakangas-Savolainen, Maria & Xiao, Xing-Zhi & Lau, Sim-Yee, 2017. "Have regulatory reforms improved the efficiency levels of the Japanese electricity distribution sector? A cost metafrontier-based analysis," Energy Policy, Elsevier, vol. 108(C), pages 606-616.
    21. Ng'ombe, John & Kalinda, Thomson, 2015. "A Stochastic Frontier Analysis of Technical Efficiency of Maize Production Under Minimum Tillage in Zambia," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 4(2).
    22. John Ngombe & Thomson Kalinda & Gelson Tembo & Elias Kuntashula, 2014. "Econometric Analysis of the Factors that Affect Adoption of Conservation Farming Practices by Smallholder Farmers in Zambia," Journal of Sustainable Development, Canadian Center of Science and Education, vol. 7(4), pages 124-124, July.
    23. Cliff Huang & Tai-Hsin Huang & Nan-Hung Liu, 2014. "A new approach to estimating the metafrontier production function based on a stochastic frontier framework," Journal of Productivity Analysis, Springer, vol. 42(3), pages 241-254, December.
    24. Awudu Abdulai & Hendrik Tietje, 2007. "Estimating technical efficiency under unobserved heterogeneity with stochastic frontier models: application to northern German dairy farms," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 34(3), pages 393-416, September.
    25. Hayami, Yujiro & Ruttan, Vernon W, 1970. "Agricultural Productivity Differences Among Countries," American Economic Review, American Economic Association, vol. 60(5), pages 895-911, December.
    26. Baltagi, Badi H & Griffin, James M, 1988. "A General Index of Technical Change," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 20-41, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John N. Ng’ombe, 2017. "Technical efficiency of smallholder maize production in Zambia: a stochastic meta-frontier approach," Agrekon, Taylor & Francis Journals, vol. 56(4), pages 347-365, October.
    2. Abebayehu Girma Geffersa & Frank Wogbe Agbola & Amir Mahmood, 2022. "Modelling technical efficiency and technology gap in smallholder maize sector in Ethiopia: accounting for farm heterogeneity," Applied Economics, Taylor & Francis Journals, vol. 54(5), pages 506-521, January.
    3. Kumar, Surender & Jain, Rakesh Kumar, 2019. "Carbon-sensitive meta-productivity growth and technological gap: An empirical analysis of Indian thermal power sector," Energy Economics, Elsevier, vol. 81(C), pages 104-116.
    4. Phuc Trong Ho & Pham Xuan Hung & Nguyen Duc Tien, 2023. "Effects of varieties and seasons on cost efficiency in rice farming: A stochastic metafrontier approach," Asian Journal of Agriculture and Rural Development, Asian Economic and Social Society, vol. 13(2), pages 120-129.
    5. Chukwujekwu A. Obianefo & John N. Ng’ombe & Agness Mzyece & Blessing Masasi & Ngozi J. Obiekwe & Oluchi O. Anumudu, 2021. "Technical Efficiency and Technological Gaps of Rice Production in Anambra State, Nigeria," Agriculture, MDPI, vol. 11(12), pages 1-13, December.
    6. Zarkovic, Maja, 2020. "Cap-and-trade and produce at least cost? Investigating firm behaviour in the EU ETS," Working papers 2020/12, Faculty of Business and Economics - University of Basel.
    7. Owusu, Eric S. & Bravo-Ureta, Boris E., 2022. "Reap when you sow? The productivity impacts of early sowing in Malawi," Agricultural Systems, Elsevier, vol. 199(C).
    8. Zhang, Hui & Zhou, Peng & Sun, Xiumei & Ni, Guanqun, 2024. "Disparities in energy efficiency and its determinants in Chinese cities: From the perspective of heterogeneity," Energy, Elsevier, vol. 289(C).
    9. Jacob Asravor & Francis Tsiboe & Richard K. Asravor & Alexander N. Wiredu & Manfred Zeller, 2024. "Technology and managerial performance of farm operators by age in Ghana," Journal of Productivity Analysis, Springer, vol. 61(3), pages 279-303, June.
    10. Julien, Jacques C. & Bravo-Ureta, Boris E. & Rada, Nicholas E., 2023. "Gender and agricultural Productivity: Econometric evidence from Malawi, Tanzania, and Uganda," World Development, Elsevier, vol. 171(C).
    11. Khanal, Uttam & Wilson, Clevo & Shankar, Sriram & Hoang, Viet-Ngu & Lee, Boon, 2018. "Farm performance analysis: Technical efficiencies and technology gaps of Nepalese farmers in different agro-ecological regions," Land Use Policy, Elsevier, vol. 76(C), pages 645-653.
    12. Mohamed Chaffai & M. Kabir Hassan, 2019. "Technology Gap and Managerial Efficiency: A Comparison between Islamic and Conventional Banks in MENA," Journal of Productivity Analysis, Springer, vol. 51(1), pages 39-53, February.
    13. Thanh Pham Thien Nguyen & Son Hong Nghiem & Eduardo Roca & Parmendra Sharma, 2016. "Efficiency, innovation and competition: evidence from Vietnam, China and India," Empirical Economics, Springer, vol. 51(3), pages 1235-1259, November.
    14. Richard Adjei Dwumfour & Eric Fosu Oteng-Abayie & Emmanuel Kwasi Mensah, 2022. "Bank efficiency and the bank lending channel: new evidence," Empirical Economics, Springer, vol. 63(3), pages 1489-1542, September.
    15. Zainab Oyetunde-Usman & Kehinde Oluseyi Olagunju, 2019. "Determinants of Food Security and Technical Efficiency among Agricultural Households in Nigeria," Economies, MDPI, vol. 7(4), pages 1-13, October.
    16. Asravor, Jacob & Wiredu, Alexander Nimo & Zeller, Manfred, 2024. "Does integrating improved seeds with agronomic practices enhance farm performance? Evidence from rural Mozambique," 2024 Annual Meeting, July 28-30, New Orleans, LA 344063, Agricultural and Applied Economics Association.
    17. Owusu, Rebecca & Kwadzo, Moses & Ghartey, William, 2022. "Regional Productivity Differential and Technology Gap In African Agriculture: A Stochastic Metafrontier Approach," International Journal of Food and Agricultural Economics (IJFAEC), Alanya Alaaddin Keykubat University, Department of Economics and Finance, vol. 10(1), January.
    18. Hung-pin Lai & Cliff J. Huang & Tsu-Tan Fu, 2020. "Estimation of the production profile and metafrontier technology gap: a quantile approach," Empirical Economics, Springer, vol. 58(6), pages 2709-2731, June.
    19. Kok Fong See & Shawna Grosskopf & Vivian Valdmanis & Valentin Zelenyuk, 2021. "What do we know from the vast literature on efficiency and productivity in healthcare? A Systematic Review and Bibliometric Analysis," CEPA Working Papers Series WP072021, School of Economics, University of Queensland, Australia.
    20. Alexandros Maziotis & Ramon Sala-Garrido & Manuel Mocholi-Arce & Maria Molinos-Senante, 2021. "Changes to The Productivity of Water Companies: Comparison of Fully Private and Concessionary Water Companies," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(10), pages 3355-3371, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:agreko:347690. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aeasaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.