[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/cup/nierev/v256y2021ip44-70_4.html
   My bibliography  Save this article

Nowcasting ‘True’ Monthly U.S. Gdp During The Pandemic

Author

Listed:
  • Koop, Gary
  • McIntyre, Stuart
  • Mitchell, James
  • Poon, Aubrey
Abstract
Expenditure-side and income-side gross domestic product (GDP) are measured at the quarterly frequency and contain measurement error. Econometric methods exist for producing reconciled estimates of underlying true GDP from these noisy estimates. Recently, the authors of this paper developed a mixed-frequency reconciliation model which produces monthly estimates of true GDP. In the present paper, we investigate whether this model continues to work well in the face of the extreme observations that occurred during the pandemic year and consider several extensions of it. These include stochastic volatility and error distributions that are fat-tailed or explicitly allow for outliers.

Suggested Citation

  • Koop, Gary & McIntyre, Stuart & Mitchell, James & Poon, Aubrey, 2021. "Nowcasting ‘True’ Monthly U.S. Gdp During The Pandemic," National Institute Economic Review, National Institute of Economic and Social Research, vol. 256, pages 44-70, April.
  • Handle: RePEc:cup:nierev:v:256:y:2021:i::p:44-70_4
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0027950121000089/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Byron Botha & Rulof Burger & Kevin Kotzé & Neil Rankin & Daan Steenkamp, 2023. "Big data forecasting of South African inflation," Empirical Economics, Springer, vol. 65(1), pages 149-188, July.
    2. Paul Ho, 2021. "Forecasting in the Absence of Precedent," Working Paper 21-10, Federal Reserve Bank of Richmond.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:nierev:v:256:y:2021:i::p:44-70_4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://edirc.repec.org/data/niesruk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.