Trigonometri
Trigonometri (dari bahasa Yunani trigonon = "tiga sudut" dan metron = "mengukur")[1] adalah sebuah cabang matematika yang mempelajari hubungan yang meliputi panjang dan sudut segitiga. Bidang ini muncul di masa Helenistik pada abad ke-3 SM dari penggunaan geometri untuk mempelajari astronomi.
Trigonometri mudah dikaitkan dalam bidang segitiga siku-siku (dengan hasil jumlah besar kedua sudut lancip sama dengan besar sudut siku-siku). Peranan untuk selain segitiga siku-siku juga ada. Sejak segitiga yang bukan siku-siku dapat dibagi menjadi dua segitiga siku-siku, banyak masalah yang dapat diatasi dengan penghitungan segitiga siku-siku. Karena itu, sebagian besar penggunaan trigonometri berhubungan dengan segitiga siku-siku. Satu pengecualian untuk spherical trigonometry, yakni pelajaran trigonometri dalam sphere atau permukaan dari curvature relatif positif dalam elips geometri (bagian yang berperan dalam menemukan astronomi dan navigasi). Trigonometri dalam curvature negatif merupakan bagian dari geometri hiperbola.
Sejarah awal
[sunting | sunting sumber]Bab atau bagian ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. |
Awal trigonometri dapat dilacak hingga zaman Mesir Kuno dan Babilonia dan peradaban Lembah Indus, lebih dari 3000 tahun yang lalu. Matematikawan India adalah perintis penghitungan variabel aljabar yang digunakan untuk menghitung astronomi dan juga trigonometri. Lagadha adalah matematikawan yang dikenal sampai sekarang yang menggunakan geometri dan trigonometri untuk penghitungan astronomi dalam bukunya Vedanga, Jyotisha, yang sebagian besar hasil kerjanya hancur oleh penjajah India.
Matematikawan Yunani Hipparchus sekitar 150 SM menyusun tabel trigonometri untuk menyelesaikan segitiga. Matematikawan Yunani lainnya, Ptolemy sekitar tahun 100 mengembangkan penghitungan trigonometri lebih lanjut.
Definisi modern dari sinus pertama kali dibuktikan dalam Surya Siddhanta, dan sifatnya didokumentasikan lebih lanjut pada abad ke-5 (AD) oleh matematikawan dan astronom India Aryabhata. Berbagai karya Matematikawan Yunani dan India ini diterjemahkan dan diperluas oleh ahli matematika Islam abad pertengahan. Pada tahun 830 M, matematikawan Persia Habash al-Hasib al-Marwazi membuat tabel kotangen pertama. Pada abad ke-10 M, pada karya matematikawan Persia Abū al-Wafā' al-Būzjānī, keenam fungsi trigonometri digunakan. Abu al-Wafa memiliki tabel sinus dengan kelipatan 0,25°, akurasi hingga 8 desimal, dan tabel nilai tangen yang akurat. Dia juga membuat inovasi penting dalam trigonometri bola Polimatik Persia Nasir al-Din al-Tusi telah digambarkan sebagai pencipta trigonometri sebagai disiplin matematika tersendiri. Dia adalah orang pertama yang memperlakukan trigonometri sebagai disiplin matematika yang independen dari astronomi, dan dia mengembangkan trigonometri bola menjadi bentuknya yang sekarang. Dia membuat daftar enam kasus berbeda dari segitiga siku-siku dalam trigonometri bola, dan dalam bukunya On the Sector Figure, dia menyatakan hukum sinus untuk segitiga bidang dan bola, menemukan hukum garis singgung untuk segitiga bola, dan memberikan bukti untuk keduanya. hukum-hukum ini. Pengetahuan tentang fungsi dan metode trigonometri mencapai Eropa Barat melalui terjemahan Latin Almagest Yunani karya Ptolemeus serta karya astronom Persia dan Arab seperti Al Battani dan Nasir al-Din al-Tusi. Salah satu karya paling awal tentang trigonometri oleh matematikawan Eropa utara adalah De Triangulis oleh matematikawan Jerman abad ke-15 Regiomontanus, yang didorong untuk menulis, dan diberi salinan Almagest, oleh kardinal sarjana Yunani Bizantium Basilios Bessarion yang tinggal bersamanya. selama beberapa tahun. Pada saat yang sama, terjemahan Almagest lainnya dari bahasa Yunani ke bahasa Latin diselesaikan oleh George dari Trebizond dari Kreta. Trigonometri masih sangat sedikit diketahui di Eropa utara abad ke-16 sehingga Nicolaus Copernicus mencurahkan dua bab De revolutionibus orbium coelestium untuk menjelaskan konsep dasarnya.
Matematikawan Silesia Bartholemaeus Pitiskus menerbitkan sebuah karya yang berpengaruh tentang trigonometri pada 1595 dan memperkenalkan kata ini ke dalam bahasa Inggris dan Prancis.
Konsep
[sunting | sunting sumber]Jika salah satu satu sudut 90o dan sudut lainnya diketahui, dengan demikian sudut ketiga dapat ditemukan, karena tiga sudut segitiga bila dijumlahkan menjadi 180 derajat. Karena itu dua sudut (yang kurang dari 90 derajat) bila dijumlahkan menjadi 90o: ini sudut komplementer.
Kegunaan
[sunting | sunting sumber]Ada banyak aplikasi trigonometri. Terutama adalah teknik triangulasi yang digunakan dalam astronomi untuk menghitung jarak ke bintang-bintang terdekat, dalam geografi untuk menghitung antara titik tertentu, dan dalam sistem navigasi satelit.
Bidang lainnya yang menggunakan trigonometri termasuk astronomi (dan termasuk navigasi, di laut, udara, dan angkasa), teori musik, akustik, optik, analisis pasar finansial, elektronik, teori probabilitas, statistika, biologi, pencitraan medis/medical imaging (CAT scan dan ultrasound), farmasi, kimia, teori angka (dan termasuk kriptologi), seismologi, meteorologi, oseanografi, berbagai cabang dalam ilmu fisika, survei darat dan geodesi, arsitektur, fonetika, ekonomi, teknik listrik, teknik mekanik, teknik sipil, grafik komputer, kartografi, kristalografi.
Pada abad ke-3 Masehi, astronom pertama kali mencatat panjang sisi-sisi dan sudut-sudut dari segitiga siku-siku antara masing-masing sisi yang memiliki hubungan: ini dia, jika setidaknya salah satu panjang sisi dan salah satu nilai sudut diketahui, lalu semua sudut dan panjang dapat ditentukan secara algoritme. Penghitungan ini didefiniskan menjadi fungsi trigonometrik dan saat ini menjadi dalam bagian matematika murni dan terapan: contohnya untuk menganalisis metode dasar seperti transformasi fourier atau gelombang persamaan, menggunakan fungsi trigonometrik untuk memahami fenomena hal yang berhubungan dengan lingkaran melalui banyak penggunaan dibidang yang berbeda seperti fisika, teknik mesin dan listrik, musik dan akustik, astronomi, dan biologi. Trigonometri juga memiliki peranan dalam menemukan surveying.
Ada pengembangan modern trigonometri yang melibatkan "penyebaran" dan "quadrance", bukan sudut dan panjang. Pendekatan baru ini disebut trigonometri rasional dan merupakan hasil kerja dari Dr. Norman Wildberger dari Universitas New South Wales. Informasi lebih lanjut bisa dilihat di situs webnya [1].
Fungsi trigonometri
[sunting | sunting sumber]Definisi dasar
[sunting | sunting sumber]Fungsi trigonometri dapat didefinisikan melalui segitiga siku-siku, dengan mana adalah segitiga siku-siku, dan adalah sisi-sisi segitiga beserta adalah hipotenusa atau sisi miring segitiga. Misalkan adalah sudut yang diketahui.
- Fungsi sin didefinisikan sebagai rasio sisi depan dengan hipotenusa.
.
- Fungsi cos didefinisikan sebagai rasio sisi samping dengan hipotenusa.
.
- Fungsi tan didefinisikan sebagai rasio sisi depan dengan sisi samping.
- Fungsi tan juga didefinisikan sebagai rasio fungsi sinus dengan kosinus
.
Ketiga fungsi di atas merupakan salah satu fungsi trigonometri paling dasar. Kita dapat mencari suatu panjang maupun sudut segitiga sembarang dengan fungsi sinus dan kosinus melalui hukum sinus dan kosinus.[2][3] Beberapa fungsi trigonometri lainnya, antara lain, kosekan (csc), sekan (sec), dan kotangen (cot).
- .
- .
- .
Grafik fungsi trigonometri
[sunting | sunting sumber]Berikut adalah grafik mengenai fungsi trigonometri.
Fungsi | Periode | Ranah/Domain | Kisaran/Range | Grafik |
---|---|---|---|---|
sinus | ||||
kosinus | ||||
tangen | ||||
sekan | ||||
kosekan | ||||
kotangen |
Identitas trigonometri
[sunting | sunting sumber]Identitas Pythagoras
[sunting | sunting sumber]Identitas Pythagoras adalah identitas trigonometri yang diturunkan dari identitas Pythagoras.[3] Dengan kata lain, identitas Pythagoras merupakan konsep teorema Pythagoras melalui fungsi trigonometri. Berikut adalah identitas Pythagoras, antara lain:
Klik "tampil" untuk melihat bukti |
---|
Dengan menggunakan definisi dari fungsi sinus dan kosinus, maka Karena berupa segitiga siku-siku, maka menurut teorema Pythagoras, . Jadi,
|
Klik "tampil" untuk melihat bukti |
---|
|
Klik "tampil" untuk melihat bukti |
---|
|
Kesamaan nilai trigonometri
[sunting | sunting sumber]Rumus jumlah dan selisih sudut
[sunting | sunting sumber]Rumus Perkalian Trigonometri
[sunting | sunting sumber]Rumus jumlah dan selisih trigonometri
[sunting | sunting sumber]Rumus sudut rangkap dua
[sunting | sunting sumber]Rumus sudut rangkap tiga
[sunting | sunting sumber]- MN
Rumus setengah sudut
[sunting | sunting sumber]Persamaan trigonometri
[sunting | sunting sumber]- Jika , maka serta
- Jika , maka serta
- Jika , maka serta
- Persamaan dapat diubah menjadi , maka , serta
Lihat pula
[sunting | sunting sumber]Referensi
[sunting | sunting sumber]- ^ "trigonometry". Online Etymology Dictionary.
- ^ Forseth, Krystle Rose; Burger, Christopher; Gilman, Michelle Rose; Rumsey, Deborah J. (2008-04-07). Pre-Calculus For Dummies (dalam bahasa Inggris). John Wiley & Sons. ISBN 978-0-470-16984-1.
- ^ a b "Trigonometric Identities | Boundless Algebra". courses.lumenlearning.com. Diakses tanggal 2021-11-26.
Pustaka
[sunting | sunting sumber]- Boyer, Carl B. (1991). A History of Mathematics (edisi ke-Second Edition). John Wiley & Sons, Inc. ISBN 0-471-54397-7.
- Hazewinkel, Michiel, ed. (2001) [1994], "Trigonometric functions", Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4
- Christopher M. Linton (2004). From Eudoxus to Einstein: A History of Mathematical Astronomy . Cambridge University Press.
- Kristanto, Yosep Dwi (2016). Matematika Langkah Demi Langkah untuk SMA/MA Kelas X. Grasindo. ISBN 9786023756506.
- Weisstein, Eric W. "Trigonometric Addition Formulas". Wolfram MathWorld. Weiner.
- Kurnianingsih, Sri (2007). Matematika SMA dan MA 1B Untuk Kelas X Semester 2. Jakarta: Esis/Erlangga. ISBN 979-734-501-7. (Indonesia)
- Kurnianingsih, Sri (2007). Matematika SMA dan MA 2A Untuk Kelas XI Semester 1 Program IPA. Jakarta: Esis/Erlangga. ISBN 979-734-502-5. (Indonesia)
Pranala luar
[sunting | sunting sumber]Cari tahu mengenai Trigonometry pada proyek-proyek Wikimedia lainnya: | |
Definisi dan terjemahan dari Wiktionary | |
Gambar dan media dari Commons | |
Berita dari Wikinews | |
Kutipan dari Wikiquote | |
Teks sumber dari Wikisource | |
Buku dari Wikibuku |
- Khan Academy: Trigonometry, free online micro lectures
- Trigonometric Delights Diarsipkan 2006-04-14 di Wayback Machine., by Eli Maor, Princeton University Press, 1998. Ebook version, in PDF format, full text presented.
- Trigonometry Diarsipkan 2007-11-04 di Wayback Machine. by Alfred Monroe Kenyon and Louis Ingold, The Macmillan Company, 1914. In images, full text presented.
- Benjamin Banneker's Trigonometry Puzzle at
- Dave's Short Course in Trigonometry by David Joyce of Clark University
- Trigonometry, by Michael Corral, Covers elementary trigonometry, Distributed under GNU Free Documentation License Diarsipkan 2013-07-29 di Wayback Machine.
- Detailed knowledge of Trigonometry formulas Diarsipkan 2021-05-11 di Wayback Machine.