Analisis lokal
Artikel atau sebagian dari artikel ini mungkin diterjemahkan dari Local analysis di en.wikipedia.org. Isinya masih belum akurat, karena bagian yang diterjemahkan masih perlu diperhalus dan disempurnakan. Jika Anda menguasai bahasa aslinya, harap pertimbangkan untuk menelusuri referensinya dan menyempurnakan terjemahan ini. Anda juga dapat ikut bergotong royong pada ProyekWiki Perbaikan Terjemahan. (Pesan ini dapat dihapus jika terjemahan dirasa sudah cukup tepat. Lihat pula: panduan penerjemahan artikel) |
Dalam matematika, istilah analisis lokal memiliki setidaknya dua arti, keduanya berasal dari gagasan untuk melihat masalah relatif terhadap setiap bilangan prima terlebih dahulu, dan kemudian mencoba untuk mengintegrasikan informasi yang diperoleh di setiap prime ke dalam gambaran 'global'. Ini adalah bentuk dari pendekatan lokalisasi.
Teori
[sunting | sunting sumber]Teori kelompok
[sunting | sunting sumber]Dalam teori grup, analisis lokal dimulai oleh teorema Sylow, yang berisi informasi penting tentang struktur sebuah grup hingga untuk setiap bilangan prima yang membagi urutan . Bidang studi ini sangat berkembang dalam pencarian klasifikasi grup sederhana hingga, dimulai dengan teorema Feit–Thompson bahwa gugus orde ganjil adalah terpecahkan.[butuh rujukan]
Teori bilangan
[sunting | sunting sumber]Dalam teori bilangan, salah satunya dapat mempelajari sebuah persamaan Diophantus, misalnya, modulo untuk semua bilangan prima , mencari batasan pada penyelesaian. Langkah selanjutnya adalah melihat pangkat prima modulo, dan kemudian mencari penyelesaian di medan -adik. Analisis lokal semacam ini memberikan kondisi untuk penyelesaian yang diperlukan. Dalam kasus di mana analisis lokal (ditambah kondisi bahwa ada penyelesaian real) juga menyediakan syarat cukup, dikatakan bahwa prinsip Hasse berlaku: ini adalah situasi terbaik yang mungkin. Ia melakukannya untuk bentuk kuadrat, tapi tentu saja tidak secara umum (misalnya untuk kurva eliptik). Sudut pandang bahwa salah satunya ingin memahami kondisi ekstra apa yang dibutuhkan sangat berpengaruh, misalnya untuk bentuk kubik.[butuh rujukan]
Beberapa bentuk analisis lokal mendasari kedua aplikasi standar Metode lingkaran Hardy-Littlewood pada teori bilangan analitik, dan penggunaan gelanggang Adele, menjadikannya salah satu prinsip yang mempersatukan di seluruh teori bilangan.[butuh rujukan]