Reference-Free Model Predictive Control for Quadrupedal Locomotion - Archive ouverte HAL
[go: up one dir, main page]

Article Dans Une Revue IEEE Access Année : 2024
Reference-Free Model Predictive Control for Quadrupedal Locomotion
1 Dipartimento di Ingegneria Industriale [Trento] (via Sommarive, 9 - 38123 Trento - Italie)
"> Dipartimento di Ingegneria Industriale [Trento]
2 Edin. - University of Edinburgh (Old College South Bridge Edinburgh EH8 9YL - Royaume-Uni)
"> Edin. - University of Edinburgh
3 LAAS - Laboratoire d'analyse et d'architecture des systèmes (7 Av du colonel Roche 31077 TOULOUSE CEDEX 4 - France)
"> LAAS - Laboratoire d'analyse et d'architecture des systèmes
4 LAAS-GEPETTO - Équipe Mouvement des Systèmes Anthropomorphes (France)
"> LAAS-GEPETTO - Équipe Mouvement des Systèmes Anthropomorphes
5 UNITN - Università degli Studi di Trento = University of Trento (via Calepina, 14 - I-38122 Trento - Italie) "> UNITN - Università degli Studi di Trento = University of Trento

Résumé

Full-dynamics model predictive control (MPC) has recently been applied to quadrupedal locomotion in semi-unstructured environments. These advances have been fueled by the availability of efficient trajectory optimization (TO) algorithms and inexpensive computational power. The main advantages of full-dynamics MPC are (i) enabling complex locomotion manoeuvres, (ii) considering actuation limits, and (iii) improving robot stability. However, to make the TO problem sufficiently simple to be solved at run time, reference swing foot trajectories are usually tracked in the MPC formulation. These trajectories are often computed independently of the motion of the joints, limiting the approach generality and capability. To address this limitation, we present a full-dynamics MPC formulation that does not require reference swing-foot trajectories, featuring a novel cost function targeting swing foot motion and considering environmental information. Removing the need for reference swing foot trajectories, our approach can also automatically adjust footstep locations, as long as the contact surfaces are predefined. We have validated our MPC formulation through simulations and experiments on the ANYmal B robot. Our approach has similar computational efficiency to state-of-the-art formulations, while displaying superior push-recovery capabilities on various terrains.
Fichier principal
Vignette du fichier
Reference-Free_Model_Predictive_Control_for_Quadrupedal_Locomotion.pdf (1.43 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04730351 , version 1 (10-10-2024)
Identifiants

Citer

Gianni Lunardi, Thomas Corbères, Carlos Mastalli, Nicolas Mansard, Thomas Flayols, et al.. Reference-Free Model Predictive Control for Quadrupedal Locomotion. IEEE Access, 2024, 12, pp.689 - 698. ⟨10.1109/access.2023.3345157⟩. ⟨hal-04730351⟩
87 Consultations
7 Téléchargements

Altmetric

Partager

More