Language version: English | 中文 | 日本語
agentUniverse is a multi-agent framework based on large language models. agentUniverse provides you with the flexible and easily extensible capability to build single agents. At its core, agentUniverse features a rich set of multi-agent collaboration mode components (which can be viewed as a Collaboration Mode Factory, or Pattern Factory). These components allow agents to maximize their effectiveness by specializing in different domains to solve problems. agentUniverse also focuses on the integration of domain expertise, helping you seamlessly incorporate domain knowledge into the work of your agents.🎉🎉🎉
🌈🌈🌈agentUniverse helps developers and enterprises to easily build powerful collaborative agents that perform at an expert level in their respective domains.
We encourage you to practice and share different domain Patterns within the community. The framework comes pre-loaded with several multi-agent collaboration mode components that have been validated in real-world industries and will continue to expand in the future. The components that will be available soon include:
- PEER Mode Component: This pattern uses agents with different responsibilities—Plan, Execute, Express, and Review—to break down complex problems into manageable steps, execute the steps in sequence, and iteratively improve based on feedback, enhancing the performance of reasoning and analysis tasks. Typical use cases: Event interpretation, industry analysis.
- DOE Mode Component: This pattern employs three agents—Data-fining, Opinion-inject, and Express—to improve the effectiveness of tasks that are data-intensive, require high computational precision, and incorporate expert opinions. Typical use cases: Financial report generation.
More patterns are coming soon...
Using pip:
pip install agentUniverse
We will show you how to:
- Prepare the environment and application projects
- Build a simple agent
- Use mode components for multi-agent collaboration
- Test and tune the execution effectiveness of an agent
- Quickly deploy an agent as a service
For more details, please read the Quick Start.
Python Code Generation and Execution Agent
Discussion Group Based on Multi-Turn Multi-Agent Mode
Financial Event Analysis Based on PEER Multi-Agent Mode
Andrew Ng's Reflexive Workflow Translation Agent Replication
agentUniverse has launched DataAgent (Minimum Viable Product Version). DataAgent aims to empower your agent with the capability of self-assessment and evolution through the use of intelligent agent abilities. For more details, please refer to the documentation. DataAgent - Data Autonomous Agent
agentUniverse Example Projects
'Zhi Xiao Zhu' AI Assistant for Financial Professionals
- Rich Multi-Agent Collaboration Modes: Provides industry-validated collaboration modes such as PEER (Plan/Execute/Express/Review) and DOE (Data-fining/Opinion-inject/Express). It also supports user-defined patterns for new modes, enabling organic collaboration among multiple agents.
- Customizable Components: All framework components, including LLM, knowledge, tools, and memory, are customizable, allowing users to enhance their dedicated agents.
- Seamless Integration of Domain Expertise: Offers capabilities for domain-specific prompts, knowledge construction, and management, and supports domain-level SOP orchestration and embedding, aligning agents to the expert level in their fields.
💡 For more features details, see the Core Features of agentUniverse.
💡 For more detailed information, please read the User Guide.
💡 Please read the API Reference.
😊 We recommend submitting your queries using GitHub Issues, we typically respond within 2 days.
😊 Join our Discord Channel to interact with us.
😊 Email: jihan.hanji@antgroup.com jerry.zzw@antgroup.com jinshi.zjs@antgroup.com
ID: @agentuniverse_
The agentUniverse project is supported by the following research achievements.
BibTeX formatted
@misc{wang2024peerexpertizingdomainspecifictasks,
title={PEER: Expertizing Domain-Specific Tasks with a Multi-Agent Framework and Tuning Methods},
author={Yiying Wang and Xiaojing Li and Binzhu Wang and Yueyang Zhou and Han Ji and Hong Chen and Jinshi Zhang and Fei Yu and Zewei Zhao and Song Jin and Renji Gong and Wanqing Xu},
year={2024},
eprint={2407.06985},
archivePrefix={arXiv},
primaryClass={cs.AI},
url={https://arxiv.org/abs/2407.06985},
}
Overview: This document provides a detailed introduction to the mechanisms and principles of the PEER multi-agent framework. In the experimental section, scores were assigned across seven dimensions: completeness, relevance, conciseness, factualness, logicality, structure, and comprehensiveness (each dimension has a maximum score of 5 points). The PEER model scored higher on average in each evaluation dimension compared to BabyAGI and demonstrated significant advantages in the dimensions of completeness, relevance, logicality, structure, and comprehensiveness. Additionally, the PEER model achieved a superior rate of 83% over BabyAGI using the GPT-3.5 Turbo (16k) model, and 81% using the GPT-4 model. For more details, please refer to the document. https://arxiv.org/pdf/2407.06985
This project is partially built on excellent open-source projects such as langchain, pydantic, gunicorn, flask, SQLAlchemy, chromadb, etc. (The detailed dependency list can be found in pyproject.toml). We would like to extend special thanks to the related projects and contributors. 🙏🙏🙏